Skip to main content
Log in

Urethane- and urea-modified polymeric sorbents enable efficient and selective removal of mercury(II) from water

  • ORIGINAL PAPER
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Design and synthesis of the new polymeric adsorbents for selective and efficient removal of Hg2+ from water is an attractive target. Cross-linked poly (vinyl benzyl chloride) (PVBC) resin was prepared starting from vinyl benzyl chloride (90% mol) and ethylene glycol dimethacrylate (EGDMA) (10% mol) using suspension polymerization. Spherical PVBC beads (200–400 µm) were reacted with an excess of ethylenediamine and ethanolamine to give the corresponding pendant amine functions. Then, the aminated beads were reacted with butyl isocyanate to obtain the urea and urethane functional sorbents. These resins have good sorption capacities for mercury ions. Under non-buffered conditions, the highest mercury sorption capacities were found as 1.94 mmol Hg (II)/ g resin and 2.50 mmol Hg (II)/g resin for U-resin and PS-UR resin, respectively. pH-depending sorption experiments, kinetic measurements and adsorption isotherm models were investigated. The mercury-loaded resins can be regenerated and recycled by simple acid washings, without losing their activity. Consequently, the resins described are cost-effective adsorbents for the removal of mercury from waste water.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Scheme 2
Fig. 2
Fig. 3
Fig. 4
Scheme 3
Scheme 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Ho YS, El-Khaiary MI (2009) Metal research trends in the environmental field. In: Wang LK, Chen JP, Hung YT, Shammas NK (eds) Heavy metals in the environment. CRC Press, pp 1–12

    Google Scholar 

  2. Rail CD (1989) Groundwater contamination: sources, control, and preventive measures. Technomic Publishing Company Inc, Lancaster

    Google Scholar 

  3. Wang J, Feng X, Anderson CWN, Xing Y, Shang L (2012) Remediation of mercury contaminated sites—a review. J Hazard Mater 221:1–18

    PubMed  Google Scholar 

  4. Oken E, Choi AL, Karagas MR, Marien K, Rheinberger CM, Schoeny R, Sunderland E, Korrick S (2012) Which fish should I eat? Perspectives influencing fish consumption choices. Environ Health Perspect 120:790–798

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Gibb H, O’Leary KG (2014) Mercury exposure and health impacts among individuals in the artisanal and small-scale gold mining community: a comprehensive review. Environ Health Perspect 122:667–672

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Mohan D, Gupta VK, Srivastava SK, Chander S (2001) Kinetics of mercury adsorption from wastewater using activated carbon derived from fertilizer waste. Colloids Surf A 177(2–3):169–181

    Article  CAS  Google Scholar 

  7. Tchounwou PB, Yedjou CG, Patlolla AK, Sutton DJ (2012) Heavy metal toxicity and the environment. In: Luch A (ed) Molecular, clinical and environmental toxicology. Springer, Basel, pp 133–164,

    Chapter  Google Scholar 

  8. Zhang D, Wang L, Zeng H, Rhimi B, Wang C (2020) Novel polyethyleneimine functionalized chitosan-lignin composite sponge with nanowall-network structures for fast and efficient removal of Hg(II) ions from aqueous solution. Environ Sci Nano 7:793–802

    Article  CAS  Google Scholar 

  9. Naushad M, Vasudevan S, Sharma G, Kumar A, Alothman ZA (2016) Adsorption kinetics, isotherms, and thermodynamic studies for Hg2+ adsorption from aqueous medium using alizarin red-S-loaded amberlite IRA-400 resin. Desalin Water Treat 57:18551–18559

    Article  CAS  Google Scholar 

  10. World Health Organization. (2005). Mercury in drinking-water: background document for development of WHO guidelines for drinking-water quality (No. WHO/SDE/WSH/05.08/10). World Health Organization

  11. Zhang D, Crini G, Lichtfouse E, Rhimi B, Wang C (2020) Removal of mercury ions from aqueous solutions by crosslinked chitosan-based adsorbents: a mini review. Chem Rec 20(10):1220–1234. https://doi.org/10.1002/tcr.202000073

    Article  CAS  PubMed  Google Scholar 

  12. Chowdhury P, Elkamel A, Ray AK (2014) Photocatalytic processes for the removal of toxic metal ions. In: Sharma SK (ed) Heavy metals in water: presence, removal and safety. Royal Society of Chemistry, Cambridge, pp 25–43

    Chapter  Google Scholar 

  13. Hua K, Xu X, Luo Z, Fang D, Bao R, Yi J (2020) Effective removal of mercury ions in aqueous solutions: a review. Curr Nanosci 16(3):363–375. https://doi.org/10.2174/1573413715666190112110659

    Article  CAS  Google Scholar 

  14. Al Hamouz OCS (2018) New phenol–glycol cross-linked polymers for efficient removal of mercury from aqueous solutions. Arab J Sci Eng 43(1):211–219. https://doi.org/10.1007/s13369-017-2847-x

    Article  CAS  Google Scholar 

  15. Dujardin MC, Caze C, Vroman I (2000) Ion-exchange resins bearing thiol groups to remove mercury.: Part 1: synthesis and use of polymers prepared from thioester supported resin. React Funct Polym 43(1–2):123–132

    Article  CAS  Google Scholar 

  16. Lezzi A, Cobianco S, Roggero A (1994) Synthesis of thiol chelating resins and their adsorption properties toward heavy metal ions. J Polym Sci Part A Polym Chem 32(10):1877–1883

    Article  CAS  Google Scholar 

  17. Yamashita K, Kurita K, Ohara K, Tamura K, Nango M, Tsuda K (1996) Syntheses of thiacrown ethers polymers and their application for heavy metal ion adsorbents. React Funct Polym 31(1):47–55

    Article  CAS  Google Scholar 

  18. Tiravanti G, Petruzzelli D, Passino R (1996) Low and non waste technologies for metals recovery by reactive polymers. Waste Manage 16(7):597–605

    Article  CAS  Google Scholar 

  19. Zuo G, Muhammed M (1995) Selective binding of mercury to thiourea-based coordinating resins. React Funct Polym 27(3):187–198

    Article  CAS  Google Scholar 

  20. Matlock MM, Howerton BS, Henke KR, Atwood DA (2001) A pyridine-thiol ligand with multiple bonding sites for heavy metal precipitation. J Hazard Mater 82(1):55–63

    Article  CAS  PubMed  Google Scholar 

  21. Shah R, Devi S (1996) Preconcentration of mercury(II) on dithizone anchored poly(vinyl pyridine) support. React Funct Polym 31:1

    Article  CAS  Google Scholar 

  22. Şenkal BF, Yavuz E (2006) Crosslinked poly (glycidyl methacrylate)-based resin for removal of mercury from aqueous solutions. J Appl Polym Sci 101(1):348–352

    Article  Google Scholar 

  23. Yavuz E, Senkal BF, Bicak N (2005) Poly (acrylamide) grafts on spherical polyvinyl pyridine resin for removal of mercury from aqueous solutions. React Funct Polym 65(1–2):121–125

    Article  CAS  Google Scholar 

  24. Biçak N, Sherrington DC, Senkal BF (1999) Graft copolymer of acrylamide onto cellulose as mercury selective sorbent. React Funct Polym 41(1–3):69–76

    Article  Google Scholar 

  25. Sonmez HB, Senkal BF, Bicak N (2003) Polymer-supported iminodiacetamides for selective mercury extraction. J Appl Polym Sci 87(8):1316–1321

    Article  CAS  Google Scholar 

  26. Yavuz E, Turan GT, Alkazan S, Senkal BF (2015) Preparation of crosslinked quaternary amide–sulfonamide resin for removal of mercury ions from aqueous solutions. Desalination Water Treat 56:2145–2153

    Article  CAS  Google Scholar 

  27. Filiz Senkal B, Yavuz E (2007) Sulfonamide based polymeric sorbents for selective mercury extraction. React Funct Polym 67:1465–1470

    Article  Google Scholar 

  28. Zhuo W, Xu H, Huang R, Zhou J, Tong Z, Xie H, Zhang X (2017) A chelating polymer resin: synthesis, characterization, adsorption and desorption performance for removal of Hg (II) from aqueous solution. J Iran Chem Soc 14(12):2557–2566

    Article  CAS  Google Scholar 

  29. Senkal BF, Yavuz E (2006) Ureasulfonamide polymeric sorbent for selective mercury extraction. Monatshefte fur Chemie 137:929–934

    Article  CAS  Google Scholar 

  30. Islam MS, Vogler RJ, Abdullah Al Hasnine SM, Hernández S, Malekzadeh N, Hoelen TP, Hatakeyama ES, Bhattacharyya D (2020) Mercury removal from wastewater using cysteamine functionalized membranes. ACS Omega 5(35):22255–22267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kaner D, Saraç A, Şenkal BF (2010) Removal of dyes from water using crosslinked aminomethane sulfonic acid based resin. Environ Geochem Health 32:321–325

    Article  CAS  PubMed  Google Scholar 

  32. Usta H, Bildik F, Yavuz E, Torunoglu Turan G, Senkal BF (2018) Preparation of poly (acrylamide) grafted onto crosslinked poly (HEMA-MMA-EGDMA) beads for the removal of phenol. Sep Sci Technol 53(8):1156–1162. https://doi.org/10.1080/01496395.2017.1329841

    Article  CAS  Google Scholar 

  33. Bradstreet RB (1954) Kjeldahl method for organic nitrogen. Anal Chem 26(1):185–187

    Article  CAS  Google Scholar 

  34. Laird FW, Smith SA (1938) Determination of mercury with s-diphenylcarbazide. Ind Eng Chem Anal Ed 10(10):576–578. https://doi.org/10.1021/ac50126a002

    Article  CAS  Google Scholar 

  35. Nikolić I, Đurović D, Tadić M, Radmilović VV, Radmilović VR (2020) Adsorption kinetics, equilibrium, and thermodynamics of Cu2+ on pristine and alkali activated steel slag. Chem Eng Commun 207(9):1278–1297. https://doi.org/10.1080/00986445.2019.1685986

    Article  CAS  Google Scholar 

  36. Cui L, Guo X, Wei Q, Wang Y, Gao L, Yan Yan LT, Du B (2015) Removal of mercury and methylene blue from aqueous solution by xanthate functionalized magnetic graphene oxide: sorption kinetic and uptake mechanism. J Colloid Interface Sci 439:112–120

    Article  CAS  PubMed  Google Scholar 

  37. Neto VDOS, Raulino GSC, Paulo de Tarso CF, Araújo-Silva MA, do Nascimento RF (2013) Equilibrium and kinetic studies in adsorption of toxic metal ions for wastewater treatment. In: Naushad M, Al-Othman ZA (eds) A book on ion exchange, adsorption and solvent extraction. Nova Science Publishers Inc, pp 145–182

    Google Scholar 

  38. Kumar U, Bandyopadhyay M (2006) Sorption of cadmium from aqueous solution using pretreated rice husk. Biores Technol 97(1):104–109. https://doi.org/10.1016/j.biortech.2005.02.027

    Article  CAS  Google Scholar 

  39. Singh SK, Townsend TG, Mazyck D, Boyer TH (2012) Equilibrium and intra-particle diffusion of stabilized landfill leachate onto micro-and meso-porous activated carbon. Water Res 46(2):491–499

    Article  CAS  PubMed  Google Scholar 

  40. Gupta SS, Bhattacharyya KG (2011) Kinetics of adsorption of metal ions on inorganic materials: a review. Adv Coll Interface Sci 162(1–2):39–58. https://doi.org/10.1016/j.cis.2010.12.004

    Article  CAS  Google Scholar 

  41. Metwally AM, Azab MM, Mahmoud AA, Ali HM, Shaaban AF (2022) Core–shell polymer nanocomposite based on free radical copolymerization of anthranilic acid and o-amino phenol in the presence of copper hexacyanoferrates nanoparticles and its adsorption properties. J Polym Res 29(3):1–16

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the Scientific Research Project Center of the Istanbul Technical University (Project number: TGA-2019-42266).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Erdem Yavuz or Bahire Filiz Senkal.

Ethics declarations

Conflict of interest

The authors declare no conflict of scientific and financial interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 222 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Buğdaycı, T., Bektaş, S., Akgül, E.T. et al. Urethane- and urea-modified polymeric sorbents enable efficient and selective removal of mercury(II) from water. Polym. Bull. 80, 12079–12102 (2023). https://doi.org/10.1007/s00289-022-04642-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-022-04642-z

Keywords

Navigation