Skip to main content
Log in

Cloisite- and bentonite-based stable nanocomposite membranes for enhancement of direct methanol fuel cell applications

  • ORIGINAL PAPER
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Nanocomposite membranes of average thickness 100 µm were successfully fabricated using a phase inversion method which involved use of sulfonated polyether ether ketone (SPEEK) incorporated with nanoclays of cloisite 30B and bentonite. The membranes were characterized for their organic functional groups, morphological structure, thermal and physical properties under the influences of cloisite 30B and bentonite addition in SPEEK matrix. The presence of nanoclays was confirmed by the changes observed in the membrane morphology and improved glass transition temperature in pristine SPEEK membrane. The fuel cell performance of the membranes was determined by their water uptake capacity, methanol permeability and proton conductivity. The 0.5 wt% addition of cloisite and bentonite in SPEEK showed 2.1% reduction of water uptake as compared to the pristine SPEEK membrane. The cloisite-added SPEEK membrane showed the average proton conductivity of 3.05 × 10–5 S cm−1 at 80 °C. Nevertheless, cloisite- and bentonite-incorporated SPEEK nanocomposite membranes demonstrated the reduced proton conductivity of 6.14% in the methanol permeability as compared to the pristine SPEEK membrane. Hence, the modified SPEEK nanocomposite membranes with cloisite and bentonite are being suggested to be a promising proton exchange membrane for direct methanol fuel cell.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Pu X, Duan Y, Li J et al (2021) Understanding of hydrocarbon ionomers in catalyst layers for enhancing the performance and durability of proton exchange membrane fuel cells. J Power Sources 493:229671. https://doi.org/10.1016/j.jpowsour.2021.229671

    Article  CAS  Google Scholar 

  2. Xu G, Wu Z, Xie Z et al (2021) Graphene quantum dot reinforced hyperbranched polyamide proton exchange membrane for direct methanol fuel cell. Int J Hydrog Energy 46:9782–9789. https://doi.org/10.1016/j.ijhydene.2020.06.303

    Article  CAS  Google Scholar 

  3. Ahmadian-Alam L, Mahdavi H (2018) A novel polysulfone-based ternary nanocomposite membrane consisting of metal-organic framework and silica nanoparticles: As proton exchange membrane for polymer electrolyte fuel cells. Renew Energy 126:630–639. https://doi.org/10.1016/j.renene.2018.03.075

    Article  CAS  Google Scholar 

  4. Karimi MB, Hooshyari K, Salarizadeh P et al (2021) A comprehensive review on the proton conductivity of proton exchange membranes (PEMs) under anhydrous conditions: Proton conductivity upper bound. Int J Hydrog Energy 46:34413–34437. https://doi.org/10.1016/j.ijhydene.2021.08.015

    Article  CAS  Google Scholar 

  5. Eren EO, Özkan N, Devrim Y (2021) Polybenzimidazole-modified carbon nanotubes as a support material for platinum-based high-temperature proton exchange membrane fuel cell electrocatalysts. Int J Hydrog Energy 46:29556–29567. https://doi.org/10.1016/j.ijhydene.2020.07.101

    Article  CAS  Google Scholar 

  6. Liu R, Dai Y, Li J et al (2021) 1-(3-Aminopropyl)imidazole functionalized poly(vinyl chloride) for high temperature proton exchange membrane fuel cell applications. J Membr Sci 620:118873. https://doi.org/10.1016/j.memsci.2020.118873

    Article  CAS  Google Scholar 

  7. Li Z, Guan Z, Wang C et al (2021) Addition of modified hollow mesoporous organosilica in anhydrous SPEEK/IL composite membrane enhances its proton conductivity. J Membr Sci 620:118897. https://doi.org/10.1016/j.memsci.2020.118897

    Article  CAS  Google Scholar 

  8. Lee S, Nam KH, Seo K et al (2020) Phase inversion-induced porous polybenzimidazole fuel cell membranes: An efficient architecture for high-temperaturewater-free proton transport. Polymers 12:1604. https://doi.org/10.3390/polym12071604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Li X, Wang S, Zhang H et al (2021) Sulfonated poly(arylene ether sulfone)s membranes with distinct microphase-separated morphology for PEMFCs. Int J Hydrog Energy 46:33978–33990. https://doi.org/10.1016/j.ijhydene.2021.07.199

    Article  CAS  Google Scholar 

  10. Tasarin S, Panawong C, Sumranjit J, Budsombat S (2021) Enhancement of proton conductivity of crosslinked poly(vinyl alcohol) through introduction of zeolitic imidazolate framework-8 and imidazole. Int J Hydrog Energy. https://doi.org/10.1016/j.ijhydene.2021.08.199

    Article  Google Scholar 

  11. Elakkiya S, Arthanareeswaran G, Ismail AF et al (2019) Polyaniline coated sulfonated TiO2 nanoparticles for effective application in proton conductive polymer membrane fuel cell. Eur Polym J 112:696–703. https://doi.org/10.1016/j.eurpolymj.2018.10.036

    Article  CAS  Google Scholar 

  12. Yogarathinam LT, Jaafar J, Ismail AF et al (2021) Polyaniline decorated graphene oxide on sulfonated poly(ether ether ketone) membrane for direct methanol fuel cells application. Polym Adv Technol. https://doi.org/10.1002/pat.5491

    Article  Google Scholar 

  13. Bisht S, Balaguru S, Ramachandran SK et al (2021) Proton exchange composite membranes comprising SiO2, sulfonated SiO2, and metal–organic frameworks loaded in SPEEK polymer for fuel cell applications. J Appl Polym Sci. https://doi.org/10.1002/app.50530

    Article  Google Scholar 

  14. Awang N, Jaafar J, Ismail AF et al (2019) Performance of void-free electrospun SPEEK/Cloisite as a function of degree of dispersion state on nanocomposite proton exchange membrane for direct methanol fuel cell application. Membranes. https://doi.org/10.3390/membranes9010007

    Article  PubMed  PubMed Central  Google Scholar 

  15. Arias JJR, Carlos Dutra J, de Gomes A, S, (2017) Hybrid membranes of sulfonated poly ether ether ketone, ionic liquid and organically modified montmorillonite for proton exchange membranes with enhanced ionic conductivity and ionic liquid lixiviation protection. J Membr Sci 537:353–361. https://doi.org/10.1016/j.memsci.2017.05.044

    Article  CAS  Google Scholar 

  16. Maab H, Nunes SP (2010) Modified SPEEK membranes for direct ethanol fuel cell. J Power Sources 195:4036–4042. https://doi.org/10.1016/j.jpowsour.2010.01.005

    Article  CAS  Google Scholar 

  17. Jaafar J, Ismail AF, Matsuura T (2009) Preparation and barrier properties of SPEEK/Cloisite 15A®/TAP nanocomposite membrane for DMFC application. J Membr Sci 345:119–127. https://doi.org/10.1016/j.memsci.2009.08.035

    Article  CAS  Google Scholar 

  18. Pandey S (2017) A comprehensive review on recent developments in bentonite-based materials used as adsorbents for wastewater treatment. J Mol Liq 241:1091–1113. https://doi.org/10.1016/j.molliq.2017.06.115

    Article  CAS  Google Scholar 

  19. Sasikala S, Meenakshi S, Bhat SD, Sahu AK (2014) Functionalized Bentonite clay-sPEEK based composite membranes for direct methanol fuel cells. Electrochim Acta 135:232–241. https://doi.org/10.1016/j.electacta.2014.04.180

    Article  CAS  Google Scholar 

  20. Elakkiya S, Arthanareeswaran G, Venkatesh K, Kweon J (2018) Enhancement of fuel cell properties in polyethersulfone and sulfonated poly (ether ether ketone) membranes using metal oxide nanoparticles for proton exchange membrane fuel cell. Int J Hydrog Energy 43:21750–21759. https://doi.org/10.1016/j.ijhydene.2018.04.094

    Article  CAS  Google Scholar 

  21. Pourjafar S, Rahimpour A, Jahanshahi M (2012) Synthesis and characterization of PVA/PES thin film composite nanofiltration membrane modified with TiO 2 nanoparticles for better performance and surface properties. J Ind Eng Chem 18:1398–1405. https://doi.org/10.1016/j.jiec.2012.01.041

    Article  CAS  Google Scholar 

  22. Zaidi SMJ, Mikhailenko SD, Robertson GP et al (2000) Proton conducting composite membranes from polyether ether ketone and heteropolyacids for fuel cell applications. J Membr Sci 173:17–34. https://doi.org/10.1016/S0376-7388(00)00345-8

    Article  CAS  Google Scholar 

  23. Yang G, Yu S, Mo J et al (2020) Impacts of catalyst nanolayers on water permeation and swelling of polymer electrolyte membranes. J Power Sources 448:227582. https://doi.org/10.1016/j.jpowsour.2019.227582

    Article  CAS  Google Scholar 

  24. Ata KC, Kadıoğlu T, Türkmen AC et al (2020) Investigation of the effects of SPEEK and its clay composite membranes on the performance of Direct Borohydride Fuel Cell. Int J Hydrog Energy 45:5430–5437. https://doi.org/10.1016/j.ijhydene.2019.09.203

    Article  CAS  Google Scholar 

  25. Merah N, Mohamed O (2019) Nanoclay and water uptake effects on mechanical properties of unsaturated polyester. J Nanomater. https://doi.org/10.1155/2019/8130419

    Article  Google Scholar 

  26. Zhai S, Dai W, Lin J et al (2019) Enhanced proton conductivity in sulfonated poly(ether ether ketone) membranes by incorporating sodium dodecyl benzene sulfonate. Polymers 11:203. https://doi.org/10.3390/polym11020203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Neburchilov V, Martin J, Wang H, Zhang J (2007) A review of polymer electrolyte membranes for direct methanol fuel cells. J Power Sources 169:221–238. https://doi.org/10.1016/j.jpowsour.2007.03.044

    Article  CAS  Google Scholar 

  28. Hussien S, Abbas AM, Abdulrazzak F (2020) Adsorption of heavy metals on bentonite and modified bentonite clay, factors, kinetic and thermodynamic studies / a review. Alg J Mat Chem 03:90–106

    Google Scholar 

  29. Tripathi BP, Shahi VK (2011) Organic-inorganic nanocomposite polymer electrolyte membranes for fuel cell applications. Prog Polym Sci 36:945–979. https://doi.org/10.1016/j.progpolymsci.2010.12.005

    Article  CAS  Google Scholar 

  30. Zulfiqar S, Sarwar MI (2009) Synthesis and characterization of aromatic-aliphatic polyamide nanocomposite films incorporating a thermally stable organoclay. Nanoscale Res Lett 4:391–399. https://doi.org/10.1007/s11671-009-9258-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Zhang S, Horrocks AR, Hull R, Kandola BK (2006) Flammability, degradation and structural characterization of fibre-forming polypropylene containing nanoclay–flame retardant combinations. Polym Degrad Stab 91:719–725. https://doi.org/10.1016/j.polymdegradstab.2005.05.023

    Article  CAS  Google Scholar 

  32. Hande VR, Rath SK, Rao S, Patri M (2011) Cross-linked sulfonated poly (ether ether ketone) (SPEEK)/reactive organoclay nanocomposite proton exchange membranes (PEM). J Membr Sci 372:40–48. https://doi.org/10.1016/j.memsci.2011.01.042

    Article  CAS  Google Scholar 

  33. Liu X, He S, Song G et al (2016) Proton conductivity improvement of sulfonated poly(ether ether ketone) nanocomposite membranes with sulfonated halloysite nanotubes prepared via dopamine-initiated atom transfer radical polymerization. J Membr Sci 504:206–219. https://doi.org/10.1016/j.memsci.2016.01.023

    Article  CAS  Google Scholar 

  34. Nunes SP, Ruffmann B, Rikowski E et al (2002) Inorganic modification of proton conductive polymer membranes for direct methanol fuel cells. J Membr Sci 203:215–225. https://doi.org/10.1016/S0376-7388(02)00009-1

    Article  CAS  Google Scholar 

  35. Smitha B, Sridhar S, Khan AA (2005) Solid polymer electrolyte membranes for fuel cell applications−a review. J Membr Sci 259:10–26. https://doi.org/10.1016/j.memsci.2005.01.035

    Article  CAS  Google Scholar 

  36. Lin YF, Yen CY, Ma CCM et al (2007) Preparation and properties of high performance nanocomposite proton exchange membrane for fuel cell. J Power Sources 165:692–700. https://doi.org/10.1016/j.jpowsour.2007.01.011

    Article  CAS  Google Scholar 

  37. Jang SY, Han SH (2012) Preparation of high styrenic sulfonated polySEPS/clay composite film for proton exchange membranes (PEMs). J Ind Eng Chem 18:1280–1285. https://doi.org/10.1016/j.jiec.2012.01.024

    Article  CAS  Google Scholar 

  38. Hasani-Sadrabadi MM, Dashtimoghadam E, Sarikhani K et al (2010) Electrochemical investigation of sulfonated poly(ether ether ketone)/clay nanocomposite membranes for moderate temperature fuel cell applications. J Power Sources 195:2450–2456. https://doi.org/10.1016/j.jpowsour.2009.11.090

    Article  CAS  Google Scholar 

  39. Jaafar J, Ismail AF, Matsuura T, Nagai K (2011) Performance of SPEEK based polymer–nanoclay inorganic membrane for DMFC. J Membr Sci 382:202–211. https://doi.org/10.1016/j.memsci.2011.08.016

    Article  CAS  Google Scholar 

  40. Ranjani M, Al-Sehemi AG, Pannipara M et al (2020) SnO2 nanocubes/bentonite modified SPEEK nanocomposite composite membrane for high performance and durable direct methanol fuel cells. Solid State Ion 353:115318. https://doi.org/10.1016/j.ssi.2020.115318

    Article  CAS  Google Scholar 

  41. Ahmed Z, Charradi K, Alsulami QA et al (2021) Physicochemical characterization of low sulfonated polyether ether ketone/Smectite clay composite for proton exchange membrane fuel cells. J Appl Polym Sci 138:49634. https://doi.org/10.1002/app.49634

    Article  CAS  Google Scholar 

  42. Kim DJ, Hwang HY, Nam SY, Hong YT (2012) Characterization of a composite membrane based on SPAES/sulfonated montmorillonite for DMFC application. Macromol Res 20:21–29. https://doi.org/10.1007/s13233-012-0004-7

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors G. Arthanareeswaran and Diganta B Das are thankful to the Royal Academy of Engineering, UK for a Newton-Bhabha Higher Education Initiative Fund (Grant Number: HEP151642), which partially made this work possible.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to G. Arthanareeswaran, Ahmad Fauzi Ismail or Diganta Bhusan Das.

Ethics declarations

Conflict of interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper POBU-D-21-01278R2.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, V., GokulaKrishnan, S.A., Arthanareeswaran, G. et al. Cloisite- and bentonite-based stable nanocomposite membranes for enhancement of direct methanol fuel cell applications. Polym. Bull. 80, 13005–13023 (2023). https://doi.org/10.1007/s00289-022-04637-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-022-04637-w

Keywords

Navigation