Skip to main content
Log in

Recently emerging trends in xerogel polymeric nanoarchitectures and multifunctional applications

  • REVIEW PAPER
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Xerogels (X-Gs) are porously open, functionalized, and high-performance materials constituted of cross-linked, dried, and ambient polymeric architectures exhibiting very high porosity, wide surface area, along with low-cost preparation strategies which can be garnered from differing organic and inorganic initiating entities for multifunctional uses. X-Gs are solidified gels fabricated by gradual drying at ambient temperature with shrinkage. X-Gs generally exhibit elevated porosity with broad surface area and very smaller pore sizes. The enchanting properties of this porous gels emanate from the remarkable flexibility of the sol–gel procedure, capable of synergizing with varying drying strategies resulting to aerogels (supercritically drying) or xerogels (ambient drying). Hybrid X-Gs are polymeric architectures, in either physical or covalent cross-linking with each other and/or with nanoparticulates or nanoarchitectures. X-G polymeric nanoarchitectures and X-G biopolymeric bionanoarchitectures can mimic native tissue behaviors, architectures, and microenvironment as a result of their hydrated as well as interconnected porosity. A vast range of nanoparticulates, including carbon derivatives, ceramic, polymeric, as well as metallic nanoparticulates, can be embedded within the X-G architecture to garner nanoarchitectures with customized functionalities. X-G polymeric or biopolymeric nanoarchitectures/nanocomposites can undergo engineering to exhibit superior physically, chemically, electrically, and biologically affiliated behaviors. Therefore, this paper presents state of the art, blue chip synthesis, preparation, characterization, and properties of X-G polymeric nanoarchitectures and X-G biopolymeric bionanoarchitectures and multifunctional applications.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 1
Scheme 2
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Scheme 3
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. Marroquin-Garcia R et al (2022) Polyphosphate-based hydrogels as drug-loaded wound dressing: an in vitro study. ACS Appl Polym Mater 4(4):2871–2879

    CAS  Google Scholar 

  2. Luo J, Yang Q, Tan S, Wang C, Wu Y (2022) Mesomorphic polymer hydrogel stabilizing ionic surfactant self-assembly for fuel cells. Ind Eng Chem Res

  3. Liu N, Qiu J (2022) Xerogel-based building material (XBM): potential for construction on Mars base and other resourceless sites. In: Behavior and mechanics of multifunctional materials XVI, Vol 12044, pp 89–99. SPIE

  4. Bera S, Datta HK, Dastidar P (2022) Nitrile-containing terpyridyl zn (II)-coordination polymer-based metallogelators displaying helical structures: synthesis, structures, and “druglike” action against B16-F10 melanoma cells. ACS Appl Mater Interfaces

  5. Lv X, Ye F, Cheng L, Zhang L A scalable and universal xerogel as binder for additive manufacturing of strong structures. Available at SSRN 4046952

  6. Vilela RR, Zanoni KP, de Oliveira M, de Vicente FS, de Camargo AS (2022) Structural and photophysical characterization of highly luminescent organosilicate xerogel doped with Ir (III) complex. J Sol-Gel Sci Technol 102(1):236–248

    CAS  Google Scholar 

  7. Self EC, Delnick FM, Ruther RE, Allu S, Nanda J (2019) High-capacity organic radical mediated phosphorus anode for sodium-based redox flow batteries. ACS Energy Lett 4:2593

    CAS  Google Scholar 

  8. Heinemann S, Heinemann C, Wenisch S, Alt V, Worch H, Hanke T (2013) Calcium phos-phate phases integrated in silica/collagen nanocomposite xerogels enhance the bioactivity and ultimately manipulate the osteoblast/osteoclast ratio in a human co-culture model. Acta Biomater 9:4878–4888

    CAS  PubMed  Google Scholar 

  9. Yu D, Wei W, Wei M, Wang F, Liang X, Sun S, Zhu Q et al. (2022) Research on the electrochromic properties of Mxene intercalated vanadium pentoxide xerogel films. J Solid State Electrochem 1–9

  10. Aiello A, Cosby T, McFarland J, Durkin DP, Trulove PC (2022) Mesoporous xerogel cellulose composites from biorenewable natural cotton fibers. Carbohydr Polym 282:119040

    CAS  PubMed  Google Scholar 

  11. Ohsedo Y (2022) Stearoylamido-D-glucamine hydrogelators for thixotropic molecular gels with tunable softness by chemical modification. Chem Asian J 17(16):e202200461

    CAS  PubMed  Google Scholar 

  12. Yang X, Jiang P, Xiao R, Fu R, Liu Y, Ji C, Song Q, Miao C, Yu H, Gu J, Wang Y, Sai H (2022) Robust silica-agarose composite A-Gs with interpenetrating network structure by in situ sol-gel process. Gels 8(5):303

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Deng C, Lu W (2021) A facile process to fabricate phosphorus/carbon xerogel composite as anode for sodium ion batteries. J Electrochem Soc 168:080529

    CAS  Google Scholar 

  14. Abdelwahab A, Farghali AA, Allah AE (2022) Synergy between iron oxide sites and nitrogen-doped carbon xerogel/diamond matrix for boosting the oxygen reduction reaction. Nanoscale Adv 4(3):837–848

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Ohtani S, Kato K, Fa S, Ogoshi T (2022) Host-guest chemistry based on solid-state pillar [n] arenes. Coord Chem Rev 462:214503

    CAS  Google Scholar 

  16. Miura K, Hirao K, Shimotsuma Y, Sakakura M, Kanehira S (2008) Formation of Si structure in glass with a femtosecond laser. Appl Phys Mater Sci Process 93(1):183–188

    CAS  Google Scholar 

  17. Nakashima S, Sugioka K, Midorikawa K (2011) Space-selective modification of the magnetic properties of transparent Fe3+-doped glass by femtosecond-laser irradiation. Appl Phys Mater Sci Process 104(3):993–996

    CAS  Google Scholar 

  18. Davis KM, Miura K, Sugimoto N, Hirao K (1996) Writing waveguides in glass with a femtosecond laser. Opt Lett 21(21):1729–1731

    CAS  PubMed  Google Scholar 

  19. Tamaki T, Watanabe W, Nagai H, Yoshida M, Nishii J, Itoh K (2006) Structural modification in fused silica by a femtosecond fiber laser at 1558 nm. Opt Express 14(15):6971–6980

    CAS  PubMed  Google Scholar 

  20. Miura K, Qiu JR, Inouye H, Mitsuyu T, Hirao K (1997) Photowritten optical waveguides in various glasses with ultrashort pulse laser. Appl Phys Lett 71(23):3329–3331

    CAS  Google Scholar 

  21. Nakashima S, Okabe R, Sugioka K, Ishida A (2018) Fabrication of magneto-optical waveguides inside transparent silica xerogels containing ferrimagnetic Fe3O4 nanoparticles. Opt Express 26(24):31900

    Google Scholar 

  22. Rajalekshmy GP, Rekha MR (2021) Strontium ion cross-linked alginate-g-poly (PEGMA) xerogels for wound healing applications: in vitro studies. Carbohydr Polym 251:117119

    Google Scholar 

  23. Ristic D, Zhivotkov D, Snigdha TT, Gašparić V, Romanova E, Ivanda M (2022) Gas sensing using xerogel coated whispering gallery mode resonators. In: Fiber lasers and glass photonics: materials through applications III Vol. 12142, pp. 40–44. SPIE

  24. Liang X, Wang L, Chang Z, Ding L, Li B, Zhang S (2018) Reusable xerogel containing quantum dots with high fluorescence retention. Polymers 10:310

    PubMed  PubMed Central  Google Scholar 

  25. Gaponenko NV, Karnilava YD, Lashkovskaya EI, Zhivulko VD, Mudryi AV, Radyush YV, Reddy DS et al (2021) Radiative properties of up-conversion coatings formed on the basis of erbium-doped barium titanate xerogels. Semiconductors 55(9):735–740

    CAS  Google Scholar 

  26. Fort CI, Rusu MM, Pop LC, Cotet LC, Vulpoi A, Baia M, Baia L (2021) Preparation and characterization of carbon xerogel based composites for electrochemical sensing and photocatalytic degradation. J Nanosci Nanotechnol 21(4):2323–2333

    CAS  PubMed  Google Scholar 

  27. Hu TT, Liu F, Dou S, Zhong LB, Cheng X, Shao ZD, Zheng YM (2022) Se-lective adsorption of trace gaseous ammonia from air by a sulfonic acid-modified silica xerogel: preparation, characterization and performance. Chem Eng J 443:136357

    CAS  Google Scholar 

  28. Li X, Yang X, Wang Z, Liu Y, Guo J, Zhu Y, Wang K et al (2022) Antibacterial, antioxidant and biocompatible nanosized quercetin-PVA xerogel films for wound dressing. Colloids Surf 209:112175

    CAS  Google Scholar 

  29. Huang B, Liu X, Li Z, Zheng Y, Yeung KWK, Cui Z, Wu S et al (2021) Rapid bacteria capturing and killing by AgNPs/N-CD@ ZnO hybrids strengthened photo-responsive xerogel for rapid healing of bacteria-infected wounds. Chem Eng J 414:128805

    CAS  Google Scholar 

  30. Križman K, Novak S, Kristl J, Majdič G, Drnovšek N (2021) Long-acting silk fibroin xerogel delivery systems for controlled release of estradiol. J Drug Deliv Sci Technol 65:102701

    Google Scholar 

  31. Civioc R, Malfait WJ, Lattuada M, Koebel MM, Galmarini S (2022) Silica–resorcinol–melamine–formaldehyde composite A-Gs as high-performance thermal insulators. ACS Omega 7(17):14478–14489

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Zhou H, Teng S, Zhou Y, Qian H (2020) Green strategy to develop novel drug-containing poly (ε-caprolactone)-chitosan-silica xerogel hybrid fibers for biomedical applications. Hindawi J Nanomater 2020:6

    Google Scholar 

  33. Costache M, Vaughan D, Qu H, Ducheyne P, Devore D (2013) Tyrosine-derived polycarbonate-silica xerogel nanocomposites for controlled drug delivery. Acta Biomater 9:6544–6552

    CAS  PubMed  Google Scholar 

  34. Hamza NM, Hussain KAM, Al-Safy AH (2022) Synthesis of nanoscale xerogel / MTX and study its effects on the liver and kidney tissue and level of igg in rats with rheumatoid arthritis. J Nanostruct 12(2):254–261. https://doi.org/10.22052/JNS.2022.02.004

    Article  CAS  Google Scholar 

  35. Pérez-Moreno A, Reyes-Peces MV, Vilches-Pérez JI, Fernández-Montesinos R, Pinaglia-Tobaruela G, Salido M, de la Rosa-Fox N, Piñero M (2021) Effect of washing treatment on the textural properties and bioactivity of silica/chitosan/TCP xerogels for bone regeneration. Int J Mol Sci 22:8321

    PubMed  PubMed Central  Google Scholar 

  36. Rößler S, Brückner A, Kruppke I, Wiesmann H-P, Hanke T, Kruppke B (2021) 3D plotting of silica/collagen xerogel granules in an alginate matrix for tissue-engineered bone implants. Materials 14:830

    PubMed  PubMed Central  Google Scholar 

  37. Pramanik R, Ganivada B, Ram F, Shanmuganathan K, Arockiarajan A (2019) Influence of nanocellulose on mechanics and morphology of polyvinyl alcohol xerogels. J Mech Behav Biomed Mater 90:275–283

    CAS  PubMed  Google Scholar 

  38. Sakuma W, Yamasaki S, Fujisawa S, Kodama T, Shiomi J, Kanamori K, Saito T (2021) Mechanically strong, scalable, mesoporous xerogels of nanocellulose featuring light permeability, thermal insulation, and flame self-extinction. ACS Nano 15(1):1436–1444

    CAS  PubMed  Google Scholar 

  39. Sakuma W, Fujisawa S, Berglund LA, Saito T (2021) Nanocellulose xerogel as template for transparent, thick flame-retardant polymer nanocomposites. Nanomaterials 11:3032

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Xie J, Liu C, Gui H, Ding Y, Yao C, Zhang T (2022) Nanofibrous, hierarchically porous poly (ether sulfone) xerogels templated from gel emulsions for removing organic vapors and particulate matters. Colloids Surf 648:129172

    CAS  Google Scholar 

  41. Chen XY, Nagamine S, Ohshima M, Rodrigue D (2022) High-performance thermal insulator based on polymer foam and silica xerogel. Polym Eng Sci 62(3):637

    CAS  Google Scholar 

  42. Jaspin S, Anbarasan R, Dharini M, Mahendran R (2022) Morphological analysis of corn xerogel and its shape shifting in water. J Food Eng 330:111107

    CAS  Google Scholar 

  43. Liu Y, Yu J, Liu L, Fan Y (2022) Shape-recoverable, piezoresistive, and thermally insulated xerogels based on nanochitin-stabilized Pickering foams. Carbohydr Polym 278:118934

    CAS  PubMed  Google Scholar 

  44. Nazir R, Ayub Y, Ibrar M (2022) Polymeric membranes nanocomposites as effective strategy for dye removal. Polymer technology in dye-containing wastewater. Springer, Singapore, pp 23–52

    Google Scholar 

  45. Wu B, Li J, Gan Y, Zhihao H, Li H, Zhang S (2022) Titanium xerogel as a potential alternative for polymeric ferric sulfate in coagulation removal of antimony from reverse osmosis concentrate. Sep Purif Technol 291:120863

    CAS  Google Scholar 

  46. Rajalekshmy GP, Rekha MR (2022) Wound healing effects of glucose oxidase–peroxidase incorporated alginate diamine PEG-g-poly (PEGMA) xerogels under high glucose conditions: an in vitro evaluation. Materialia 28:101464

    Google Scholar 

  47. Mamada H, Kemmochi A, Tamura T, Shimizu Y, Owada Y, Hisakura K, Oda T, Ohkohchi N, Kawano Y, Hanawa T (2022) Development and evaluation of novel hydrogel for preventing postoperative pancreatic fistula. Polym Adv Technol 33:125–136

    CAS  Google Scholar 

  48. Idumah CI, Ezeani OE, Okonkwo U, Nwuzor IC, Odera SR (2022) Novel trends in MXene/conducting polymeric hybrid nanoclusters. J Clust Sci 16:1–32

    Google Scholar 

  49. Ezika AC, Sadiku ER, Idumah CI, Ray S, Adekoya J, Odera R (2022) Recently emerging trends in MXene hybrid conductive polymer energy storage nanoarchitectures. Polym Plast Technol Mater 61:861–887

    CAS  Google Scholar 

  50. Ezika AC, Sadiku ER, Idumah CI, Ray S, Hamam Y (2022) On energy storage capacity of conductive MXene hybrid nanoarchitectures. J Energy Storage 45:103686

    Google Scholar 

  51. Idumah CI, Nwuzor IC, Odera RS (2021) Recent advances in polymer hydrogel nanoarchitectures and applications. Curr Res Green Sust Chem 4:100143. https://doi.org/10.1016/j.crgsc.2021.100143

    Article  CAS  Google Scholar 

  52. Idumah CI, Ezika A, Okpechi V (2021) Emerging trends in polymer aerogel nanoarchitectures, surfaces, interfaces and applications. Surf Interfaces 25:101258

    CAS  Google Scholar 

  53. Idumah CI (2021) Progress in polymer nanocomposites for bone regeneration and engineering. Polym Polym Compos 29:509–527

    CAS  Google Scholar 

  54. Idumah CI (2021) Novel trends in self-healable polymer nanocomposites. J Thermoplast Compos Mater 34:834–858

    CAS  Google Scholar 

  55. Idumah CI, Ezeani EO, Nwuzor IC (2021) A review: advancements in conductive polymers nanocomposites. Polym-Plast Technol Mater 60:756–783

    CAS  Google Scholar 

  56. Idumah CI (2021) Recent advancements in self-healing polymers, polymer blends, and nanocomposites. Polym Polym Compos 29:246–258

    CAS  Google Scholar 

  57. Idumah CI (2021) Recent advancements in thermolysis of plastic solid wastes to liquid fuel. J Therm Anal Calorim. https://doi.org/10.1007/s10973-021-10776-5

    Article  Google Scholar 

  58. Idumah CI, Obele CM, Enwerem UE (2021) On interfacial and surface behavior of polymeric MXenes nanoarchitectures and applications. Curr Res Green Sust Chem 4:100104

    CAS  Google Scholar 

  59. Idumah CI (2021) Novel trends in polymer aerogel nanocomposites. Polym-Plast Technol Mater 60:1–13

    Google Scholar 

  60. Nwuzor IC, Idumah CI, Nwanonenyi SC, Ezeani OE (2021) Emerging trends in self-polishing anti-fouling coatings for marine environment. Saf Extreme Environ 3:9–25

    Google Scholar 

  61. Idumah CI (2021) Novel trends in conductive polymeric nanocomposites, and bionanocomposites. Synth Met 273:116674

    CAS  Google Scholar 

  62. Idumah CI, Ogbu J, Ndem J, Obiana V (2019) Influence of chemical modification of kenaf fiber on xGNP-PP- nano-biocomposites. SN Appl Sci 1:1261

    Google Scholar 

  63. Idumah CI, Hassan A, Affam A (2015) A review of recent developments in flammability of polymer nanocomposites. Rev Chem Eng 31:149–177

    CAS  Google Scholar 

  64. Idumah C, Hassan A (2016) Characterization and preparation of conductive exfoliated graphene nanoplatelets kenaf fibre hybrid polypropylene composites. Synth Met 212:91–104

    CAS  Google Scholar 

  65. Idumah C, Hassan A (2016) Recently emerging trends in thermal conductivity of polymer nanocomposites. Rev Chem Eng 32:413–457

    Google Scholar 

  66. Idumah C, Hassan A (2015) Emerging trends in flame retardancy of biofibers, biopolymers, biocomposites, and bionanocomposites. Rev Chem Eng 32:115–148

    Google Scholar 

  67. Idumah C, Hassan A (2016) Emerging trends in graphene carbon based polymer nanocomposites and applications. Rev Chem Eng 32:223–226

    CAS  Google Scholar 

  68. Idumah C, Hassan A (2016) Effect of exfoliated graphite nanoplatelets on thermal and heat deflection properties of kenaf polypropylene hybrid nanocomposites. J Polym Eng 36:877–889

    CAS  Google Scholar 

  69. Idumah C, Hassan A (2016) Emerging trends in eco-compliant, synergistic, and hybrid assembling of multifunctional polymeric bionanocomposites. Rev Chem Eng 32:305–361

    CAS  Google Scholar 

  70. Idumah C, Hassan A, Bourbigot S (2017) Influence of exfoliated graphene nanoplatelets on flame retardancy of kenaf flour polypropylene hybrid nanocomposites. J Anal Appl Pyrolysis 123:65–72

    CAS  Google Scholar 

  71. Idumah C, Hassan A (2017) Hibiscus cannabinus fiber/PP based nano-biocomposites reinforced with graphene nanoplatelets. J Nat Fibers 14:691–706

    CAS  Google Scholar 

  72. Idumah C, Hassan A, Ogbu J, Ndem J, Nwuzor I (2018) Recently emerging advancements in halloysite nanotubes polymer nanocomposites. Compos Interface 26:751–824

    Google Scholar 

  73. Idumah C, Hassan A, Bourbigot S (2018) Synergistic effect of exfoliated graphene nanoplatelets and non-halogen flame retardants on flame retardancy and thermal properties of kenaf flour-PP nanocomposites. J Therm Anal Calorim 134:1681–1703

    CAS  Google Scholar 

  74. Idumah C, Hassan A, Ihuoma D (2019) Recently emerging trends in polymer nanocomposites packaging materials. Polym Plast Technol Eng 58:1054–1109

    CAS  Google Scholar 

  75. Idumah CI, Hassan A, Ogbu JE, Ndem J, Oti W, Obiana V (2020) Electrical, thermal and flammability properties of conductive filler kenaf–reinforced polymer nanocomposites. J Thermplast Compos Mater 33:516–540

    CAS  Google Scholar 

  76. Idumah CI, Obere CM (2021) Understanding interfacial influence on properties of polymer nanocomposites. Surf Interfaces 22:100879

    CAS  Google Scholar 

  77. Idumah CI, Obele MC, Ezeani EO (2021) Understanding interfacial dispersions in ecobenign polymer nano-biocomposites. Polym-Plast Technol Mater 60(3):233–252

    CAS  Google Scholar 

  78. Idumah CI, Obele CM, Ezeani EO, Hassan A (2020) Recently emerging nanotechnological advancements in polymer nanocomposite coatings for anti-corrosion, anti-fouling and self-healing. Surf Interfaces 21:100734

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Idumah, CI (2019) Novel trends in selfhealable polymer nanocomposites. J Thermoplast Compos Mater 0892705719847247

  80. Idumah CI, Zurina M, Hassan A, Norhayani O, Shuhadah I (2019) Recently emerging trends in bone replacement polymer nanocomposites. Nanostr Polym Compos Biomed Appl. https://doi.org/10.1016/B9780128167717000089

    Article  Google Scholar 

  81. Idumah CI (2020) Advancements in conducting polymer bionanocomposites, and hydrogels for biomedical applications. Int J Polym Mater Polym Biomater. https://doi.org/10.1080/00914037.2020.1857384

    Article  Google Scholar 

  82. Idumah CI, Ezeani EO, Nwuzor IC (2020) A review: advancements in conductive polymers nanocomposites. Polym Plast Technol Mater. https://doi.org/10.1080/25740881.2020.1850783

    Article  Google Scholar 

  83. Idumah CI (2020) Influence of NT in polymeric textiles, applications, and fight against COVID-19. J Text Inst. https://doi.org/10.1080/00405000.2020.1858600

    Article  Google Scholar 

  84. Idumah CI, Nwabanne JT, Tanjung FA (2021) Novel trends in poly (lactic) acid hybrid bionanocomposites. Clean Mater 2:100022

    Google Scholar 

  85. Idumah CI (2022) Recently emerging trends in magnetic polymer hydrogel nanoarchitectures. Polym-Plast Technol Mater 7:1–32

    Google Scholar 

  86. Idumah CI (2022) Recent trends in MXene polymeric hydrogel bionanoarchitectures and applications. Clean Mater 5:100103

    Google Scholar 

  87. Idumah CI (2022) Emerging trends in poly (lactic-co-glycolic) acid bionanoarchitectures and applications. Clean Mater 5:100102

    Google Scholar 

  88. Idumah CI (2022) A review on polyaniline and graphene nanocomposites for supercapacitors. Polym-Plast Technol Mater. https://doi.org/10.1080/25740881.2022.2086810

    Article  Google Scholar 

  89. Idumah CI, Okonkwo UC, Obele CM (2022) Recently emerging advancements in montmorillonite polymeric nanoarchitectures and applications. Clean Mater 4:100071

    Google Scholar 

  90. Idumah CI (2022) Recent advancements in electromagnetic interference shielding of polymer and mxene nanocomposites. Polym Plast Technol Mater. https://doi.org/10.1080/25740881.2022.2089581

    Article  Google Scholar 

  91. Idumah CI (2022) Emerging advancements in MXene polysaccharide bionanoarchitectures and biomedical applications. Int J Polym Mater Polym Biomater. https://doi.org/10.1080/00914037.2022.2098297

    Article  Google Scholar 

  92. Idumah CI (2022) Recently emerging advancements in polymeric cryogel nanostructures and biomedical applications. Int J Polym Mater Polym Biomater. https://doi.org/10.1080/00914037.2022.2097678

    Article  Google Scholar 

  93. Zhu A, Huang J, Xie H, Yue W, Qin S, Zhang F, Xu Q (2022) Use of a superbase/DMSO/CO2 solvent in order to incorporate cellulose into organic ionogel electrolyte for flexible supercapacitors. Chem Eng J 446:3131

    Google Scholar 

  94. Su G, Li Z, Dai R (2022) Recent advances in applied fluorescent polymeric gels. ACS Appl Polym Mater 4(5):3131–3152

    CAS  Google Scholar 

  95. Wang J, Wang T, Jiang Q, Zhang Y, Qiu Y, Wang H, Xie X (2022) Configuration-dependent liquid crystal and gel behaviors of tetraphenylethene-containing main-chain copolyesters. Macromol Rapid Commun 43(18):2200154

    CAS  Google Scholar 

  96. Garcinuño S, Aranaz I, Civera C, Arias C, Acosta N (2022) Evaluating non-conventional chitosan sources for controlled release of risperidone. Polymers 14:1355

    PubMed  PubMed Central  Google Scholar 

  97. Lee S, Gwon K, Kim H, Park BJ, Shin JH (2022) High-performance amperometric carbon monoxide sensor based on a xerogel-modified PtCr/C microelectrode. Sens Actuators Chem 369:132275

    CAS  Google Scholar 

  98. Li G, Hao J, Li W, Ma F, Ma T, Gao W, Wen D et al (2021) Integrating highly porous and flexible au hydrogels with soft-mems technologies for high-performance wearable biosensing. Anal Chem 93(42):14068–14075

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Engr. Dr. Christopher Igwe Idumah, of the Faculty of Engineering, Department of Polymer Engineering, Nnamdi Azikiwe University, Awka, Anambra State, Nigeria, is acknowledged, for relentlessly disseminating information on polymer nanocomposites materials engineering, despite daunting challenges and zero funding.

Funding

No funding is reported.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher Igwe Idumah.

Ethics declarations

Conflict of interest

Author acknowledges no conflicts.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Idumah, C.I., Low, J.H. & Emmanuel, E.O. Recently emerging trends in xerogel polymeric nanoarchitectures and multifunctional applications. Polym. Bull. 80, 11557–11587 (2023). https://doi.org/10.1007/s00289-022-04625-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-022-04625-0

Keywords

Navigation