Skip to main content
Log in

Utilization of electron beam irradiation vulcanization to reuse devulcanized rubber in polypropylene-montmorillonite nanocomposites

  • ORIGINAL PAPER
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

This research was conducted to investigate the effects of montmorillonite (MMT) particles and electron beam irradiation on physico-mechanical properties of the samples. The addition of MMT particles had highly increased the d-spacing of deflection peak (002) indicates the well dispersion of MMT particles in polymer matrix. The application of 150 kGy could induce the crosslinking networks as by gel content test. However, further increment from 150 to 200 kGy had significantly decreased the gel content. The addition of MMT particles increased the tensile strength and Young’s modulus due to the effective intercalation of MMT particles as determined in XRD analysis. Higher MMT amount had decreased the tensile strength and Young’s modulus of all samples due to the agglomeration of MMT particles (as observed in SEM analysis). Besides, the application of 50 kGy had gradually increased the tensile strength and Young’s modulus of all samples due to the crosslinking networks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

MMT:

Montmorillonite

PP:

Polypropylene

LDPE:

Low density polyethylene

HDPE:

High density polyethylene

XRD:

X-ray diffraction

SEM:

Scanning electron microscopy

TEM:

Transmission electron microscopy

λ :

Wavelength of the incident x-ray beams, nm

θ :

Bragg angle

d :

Interlayer distance

R :

The inter-chain separation

Δd :

Change of d-spacing

References

  1. Hassan MM, Badway NA, Gamal AM, Elnaggar MY, Hegazy ESA (2010) Studies on mechanical, thermal and morphological properties of irradiated recycled polyamide and waste rubber powder blends. Nucl Instrum Methods Phys Res B 268:1427–1434

    Article  CAS  Google Scholar 

  2. Yasin T, Khan S, Shafiq M, Gill R (2015) Radiation crosslinking of styrene-butadiene rubber contining waste tire rubber and polyfunctional monomers. Radiat Phys Chem 106:343–347

    Article  CAS  Google Scholar 

  3. Bockstal L, Berchem T, Schmetz Q, Richel A (2019) Devulcanisation and reclaiming of tires and rubber by physical and chemical processes: a review. J Clean Prod 236:117574–117589

    Article  CAS  Google Scholar 

  4. Kumar CR, Fuhrmann I, Karger-Kocsis J (2002) LDPE-based thermoplastic elastomers cobtaining ground tire rubber with and without dynamic curing. Polym Degrad Stab 76:137–144

    Article  CAS  Google Scholar 

  5. Mondal M, Gohs U, Wagenknecht U, Heinrich G (2013) Polypropylene/natural rubber thermoplastic vulcaniztes by eco-friendly and sustainable electron induced reactive processing. Radiat Phys Chem 88:74–81

    Article  CAS  Google Scholar 

  6. Ramarad S, Khalid M, Ratnam CT, Chuah AL, Rashmi W (2015) Waste tire rubber in polymer blends: a review on the evolution, properties and future. Prog Mater Sci 72:100–140

    Article  CAS  Google Scholar 

  7. Maier C, Calafut T (1998) Polypropylene. Plastics Design Library, Norwich, NY

  8. Hassan MM, Badway NA, Gamal AM, Elnaggar MY, Hegazy ESA (2010) Effect of carbon black on the properties of irradiated recycled polyamide/rubber waste composites. Nucl Instrum Methods Phys Res B 268:2527–2534

    Article  CAS  Google Scholar 

  9. Noriman N, Ismail H (2011) Properties of styrene butadiene rubber (SBR)/recycled acrylonitrile butadiene rubber (NBRr) blends: the effects of carbon black/silica (CB/Sil) hybrid filler and silane coupling agent, Si69. J Appl Polym Sci 124(1):19–27

    Article  Google Scholar 

  10. Bee SL, Abdullah MAA, Bee ST, Sin LT, Rahmat AR (2018) Polymer nanocomposites based on silylated-montmorillonite: a review. Prog Polym Sci 85:57–82

    Article  CAS  Google Scholar 

  11. Wiwattananukul R, Fan B, Yamaguchi M (2017) Improvement of rigidity for rubber-toughened polypropylene via localization of carbon nanotubes. Compos Sci Technol 141:106–112

    Article  CAS  Google Scholar 

  12. Zhu TT, Zhou CH, Kabwe FB, Wu QQ, Li CS, Zhang JR (2019) Exfoliation of montmorillonite and related properties of clay/polymer nanocomposites. Appl Clay Sci 169:48–66

    Article  CAS  Google Scholar 

  13. Bee ST, Hassan A, Ratnam CT, Tee TT, Sin LT (2012) Effects of montmorillonite on the electron beam irradiated alumina trihydrate added polyethylene and ethylene vinyl acetate nanocomposite. Polym Compos 33:1883–1892

    Article  CAS  Google Scholar 

  14. Bee ST, Hassan A, Ratnam CT, Tee TT, Sin LT, Hui D (2014) Dispersion and roles of montmorillonite on structural, flammability, thermal and mechanical behaviour of electron beam irradiated flame retarded nanocomposite. Compos Part B 61:41–48

    Article  CAS  Google Scholar 

  15. Sengwa R, Choudhary S (2014) Structural characterization of hydrophilic polymer blends/montmorillonite clay nanocomposites. J Appl Polym Sci 131(16):40617

    Article  Google Scholar 

  16. Ranade A, D’Souza N, Gnade B (2002) Exfoliated and intercalated polyamide-imide nanocomposites with montmorillonite. Polymer 43(13):3759–3766

    Article  CAS  Google Scholar 

  17. Bee ST, Hassan A, Ratnam CT, Tee TT, Sin LT (2013) Investigation of nano-size montmorillonite on electron beam irradiated flame retardant polyethylene and ethylene vinyl acetate blends. Nucl Instrum Methods Phys Res B 299:42–50

    Article  CAS  Google Scholar 

  18. Bee ST, Sin LT, Ratnam CT, Kavee-Raaz RRD, Tee TT, Hui D, Rahmat AR (2015) Electron beam irradiation enhanced of Hibiscus cannabinus fiber strengthen polylactic acid composites. Compos B Eng 79:35–46

    Article  CAS  Google Scholar 

  19. Shukushima S, Hayami H, Ito T, Nishimoto S (2001) Modification of radiation cross-linked polypropylene. Radiat Phys Chem 60:489–493

    Article  CAS  Google Scholar 

  20. Singh A (2001) Irradiation of polymer blends containing a polyolefin. Radiat Phys Chem 60(4–5):453–459

    Article  CAS  Google Scholar 

  21. Tamboli S, Mhaske S, Khale D (2004) Crosslinked polyethylene. Indian J Chem Technol 11(6):853–864

    CAS  Google Scholar 

  22. Ng HM, Bee ST, Ratnam CT, Sin LT, Phang YY, Tee TT, Rahmat AR (2014) Effectiveness of trimethylopropane trimethacrylate for electron-beam-irradiation-induced cross-linking of polylactic acid. Nucl Instrum Methods Phys Res B 319:62–70

    Article  CAS  Google Scholar 

  23. Kumar V, Ali Y, Sonkawade RG, Dhaliwal AS (2010) Effect of gamma irradiation on the properties of plastics bottle sheet. Nucl Instrum Methods Phys Res B 287:10–14

    Article  Google Scholar 

  24. Bee ST, Hassan A, Ratnam CT, Tee TT, Sin LT (2014) Investigation of enhancing effect of nano0montmorillonite on fire-retardant added low-density polyethylene-ethylene vinyl acetate hybrid system. J Thermoplast Compos Mater 27(11):1515–1529

    Article  Google Scholar 

  25. Bhadra S, Khastgir D (2008) Determination of crystal structure of polyaniline and substituted polyanilines through powder X-ray diffraction analysis. Polym Test 27:851–857

    Article  CAS  Google Scholar 

  26. Steller R, Zuchowska D, Meissner W, Paukszta D, Garbarczyk J (2006) Crystalline structure of polypropylene in blends with thermoplastic elastomers after electron beam irradiation. Radiat Phys Chem 75:259–267

    Article  CAS  Google Scholar 

  27. Han DH, Shin SH, Petrow S (2004) Crosslinking and degradation of polypropylene by electron beam irradiation in the presence of trifunctional monomers. Radiat Phys Chem 69:239–244

    Article  CAS  Google Scholar 

  28. Ramarad S, Ratnam CT, Khalid M, Chuah AL, Hanson S (2017) Improved crystallinity and dynamic mechanical properties of reclaimed waste tire rubber/EVA blends under the influence of electron beam irradiation. Radiat Phys Chem 130:362–370

    Article  CAS  Google Scholar 

  29. Rajan VV, Dierkes WK, Joseph R, Noordermeer JWM (2006) Science and technology of rubber reclamation with special attention to NR based waste latex products. Prog Polym Sci 31:811–834

    Article  CAS  Google Scholar 

  30. Molanorouzi M, Mohaved SO (2016) Reclaimimg waste tire rubber by an irradiation technique. Polym Degrad Stab 128:115–125

    Article  CAS  Google Scholar 

  31. Hassan MM, Aly RO, Aal SEA, El-Masry AM, Fathy ES (2013) Mechanochemical devulcanization and gamma irradiation of devulcanized waste rubber/high density polyethylene thermoplastic elastomer. J Ind Eng Chem 19:1722–1729

    Article  CAS  Google Scholar 

  32. Bee ST, Sin LT, Khor SL, Lim KS, Rahmat AR (2017) Enhancement of mechanical and thermal properties of (Poly[vinyl alcohol])-Dialdehyde starch composites via the incorporation of montmorillonite nanofillers. J Vinyl Addit Technol 23(S1):E128–E141

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are very appreciating with the kindliness of Malaysian Nuclear Agency, Bangi, Selangor for allowing usage their equipment on performing this research.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Soo-Tueen Bee or Lee Tin Sin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bee, ST., Sin, L.T., Sivalingam, V. et al. Utilization of electron beam irradiation vulcanization to reuse devulcanized rubber in polypropylene-montmorillonite nanocomposites. Polym. Bull. 80, 12133–12155 (2023). https://doi.org/10.1007/s00289-022-04624-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-022-04624-1

Keywords

Navigation