Skip to main content
Log in

Functionalization of the magnetic chitosan support with dipyridylamine as a nitrogen-rich pincer ligand for Pd immobilization and investigation of catalytic efficiency in Sonogashira coupling

  • ORIGINAL PAPER
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

In this study, at first a NNN pincer type ligand was synthesized through the nucleophilic substitution reaction of 2,2′-dipyridylamine with trichloro-1,3,5-triazine in 2:1 ratio. In the next step, the magnetic chitosan biosupport was reacted with this nitrogen-rich ligand that provided coordinative sites for the palladium complexation. The prepared nanocomposite (Fe3O4@DPA-CS@NNN-Pd0) was identified by different analysis including FT-IR, XRD, EDX, FESEM, DLS, VSM and ICP. Then, its catalytic activity was examined in the Sonogashira coupling reaction. The related products were produced in a short reaction time with proper yields. Moreover, the nanocatalyst can be magnetically separated and reused for four successive runs with no noticeable loss in its catalytic activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Scheme 2

Similar content being viewed by others

References

  1. Beletskaya IP, Cheprakov AV (2000) The Heck reaction as a sharpening stone of palladium catalysis. Chem Rev 100:3009–3066

    Article  CAS  PubMed  Google Scholar 

  2. Magano J, Dunetz JR (2011) Large-scale applications of transition metal-catalyzed couplings for the synthesis of pharmaceuticals. Chem Rev 111:2177–2250

    Article  CAS  PubMed  Google Scholar 

  3. Nicolaou K, Bulger PG, Sarlah D (2005) Palladium-catalyzed cross-coupling reactions in total synthesis. Angew Chem Int Ed 44:4442–4489

    Article  CAS  Google Scholar 

  4. Heck RF (1979) Palladium-catalyzed reactions of organic halides with olefins. Acc Chem Res 12:146–151

    Article  CAS  Google Scholar 

  5. Sonogashira K, Tohda Y, Hagihara N (1975) A convenient synthesis of acetylenes: catalytic substitutions of acetylenic hydrogen with bromoalkenes, iodoarenes and bromopyridines. Tetrahedron Lett 16:4467–4470

    Article  Google Scholar 

  6. Kamal A, Srinivasulu V, Seshadri B, Markandeya N, Alarifi A, Shankaraiah N (2012) Water mediated Heck and Ullmann couplings by supported palladium nanoparticles: importance of surface polarity of the carbon spheres. Green Chem 14:2513–2522

    Article  CAS  Google Scholar 

  7. Hajipour AR, Rezaei F, Khorsandi Z (2017) Pd/Cu-free Heck and Sonogashira cross-coupling reaction by Co nanoparticles immobilized on magnetic chitosan as reusable catalyst. Green Chem 19:1353–1361

    Article  CAS  Google Scholar 

  8. Balanta A, Godard C, Claver C (2011) Pd nanoparticles for C-C coupling reactions. Chem Soc Rev 40:4973–4985

    Article  CAS  PubMed  Google Scholar 

  9. Das P, Linert W (2016) Schiff base-derived homogeneous and heterogeneous palladium catalysts for the Suzuki-Miyaura reaction. Coord Chem Rev 311:1–23

    Article  CAS  Google Scholar 

  10. Shende VS, Saptal VB, Bhanage BM (2019) Recent advances utilized in the recycling of homogeneous catalysis. Chem Rec 19:2022–2043

    Article  CAS  PubMed  Google Scholar 

  11. Molnár Á, Papp A (2017) Catalyst recycling—a survey of recent progress and current status. Coord Chem Rev 349:1–65

    Article  Google Scholar 

  12. Nasrollahzadeh M, Issaabadi Z, Tohidi MM, Mohammad Sajadi S (2018) Recent progress in application of graphene supported metal nanoparticles in C–C and C–X coupling reactions. Chem Rec 18:165–229

    Article  CAS  PubMed  Google Scholar 

  13. Nasrollahzadeh M (2018) Advances in magnetic nanoparticles-supported palladium complexes for coupling reactions. Molecules 23:2532

    Article  PubMed  PubMed Central  Google Scholar 

  14. Poupart R, Grande D, Carbonnier B, Le Droumaguet B (2019) Porous polymers and metallic nanoparticles: a hybrid wedding as a robust method toward efficient supported catalytic systems. Prog Polym Sci 96:21–42

    Article  CAS  Google Scholar 

  15. Cui C, Fu Q, Meng L, Hao S, Dai R, Yang J (2020) Recent progress in natural biopolymers conductive hydrogels for flexible wearable sensors and energy devices: materials, structures, and performance. ACS Appl Bio Mater 4:85–121

    Article  PubMed  Google Scholar 

  16. Kritchenkov AS, Kletskov AV, Egorov AR, Kurasova MN, Tskhovrebov AG, Khrustalev VN (2021) Ultrasound and click chemistry lead to a new chitin chelator. Its Pd (II) complex is a recyclable catalyst for the Sonogashira reaction in water. Carbohyd Polym 252:117167

    Article  CAS  Google Scholar 

  17. El Kadib A (2015) Chitosan as a sustainable organocatalyst: a concise overview. Chemsuschem 8:217–244

    Article  PubMed  Google Scholar 

  18. Berillo D, Cundy A (2018) 3D-macroporous chitosan-based scaffolds with in situ formed Pd and Pt nanoparticles for nitrophenol reduction. Carbohyd Polym 192:166–175

    Article  CAS  Google Scholar 

  19. Molnár Á (2019) The use of chitosan-based metal catalysts in organic transformations. Coord Chem Rev 388:126–171

    Article  Google Scholar 

  20. Rafiee F (2019) Recent advances in the application of chitosan and chitosan derivatives as bio supported catalyst in the cross coupling reactions. Curr Org Chem 23:390–408

    Article  CAS  Google Scholar 

  21. Moghadas B, Solouk A, Sadeghi D (2021) Development of chitosan membrane using non-toxic crosslinkers for potential wound dressing applications. Polym Bull 78:4919–4929

    Article  CAS  Google Scholar 

  22. Qin L, Zhao Y, Wang L, Zhang L, Kang S, Wang W, Zhang T, Song S (2020) Preparation of ion-imprinted montmorillonite nanosheets/chitosan gel beads for selective recovery of Cu (II) from wastewater. Chemosphere 252:126560

    Article  CAS  PubMed  Google Scholar 

  23. Shi H, Dong C, Yang Y, Han Y, Wang F, Wang C, Men J (2020) Preparation of sulfonate chitosan microspheres and study on its adsorption properties for methylene blue. Int J Biol Macromol 163:2334–2345

    Article  CAS  PubMed  Google Scholar 

  24. Xiong S-W, Yu Y, Wang P, Liu M, Chen S-H, Yin X-Z, Wang L-X, Wang H (2020) Growth of AgBr/Ag 3 PO 4 heterojunction on chitosan fibers for degrading organic pollutants. Adv Fiber Mater 2:246–255

    Article  CAS  Google Scholar 

  25. Sofla MSK, Mortazavi S, Seyfi J (2020) Preparation and characterization of polyvinyl alcohol/chitosan blends plasticized and compatibilized by glycerol/polyethylene glycol. Carbohydr Polym 232:115784

    Article  Google Scholar 

  26. Begum S, Yuhana NY, Saleh NM, Kamarudin NN, Sulong AB (2021) Review of chitosan composite as a heavy metal adsorbent: material preparation and properties. Carbohydr Polym. https://doi.org/10.1016/j.carbpol.2021.117613

    Article  PubMed  Google Scholar 

  27. Rafiee F, Rezaee M (2021) Different strategies for the lipase immobilization on the chitosan based supports and their applications. Int J Biol Macromol. https://doi.org/10.1016/j.ijbiomac.2021.02.198

    Article  PubMed  Google Scholar 

  28. Nouri M (2020) Green synthesis of chitosan magnetic nanoparticles and their application with poly-aldehyde kefiran cross-linker to immobilize pectinase enzyme. Biocatal Agric Biotechnol 29:101681

    Article  Google Scholar 

  29. Karimi M (2016) Immobilization of lipase onto mesoporous magnetic nanoparticles for enzymatic synthesis of biodiesel. Biocatal Agric Biotechnol 8:182–188

    Article  Google Scholar 

  30. Nadar SS, Rathod VK (2019) A co-immobilization of pectinase and cellulase onto magnetic nanoparticles for antioxidant extraction from waste fruit peels. Biocatal Agric Biotechnol 17:470–479

    Article  Google Scholar 

  31. Hajipour AR, Tadayoni NS, Khorsandi Z (2016) Magnetic iron oxide nanoparticles–N-heterocyclic carbene–palladium (II): a new, efficient and robust recyclable catalyst for Mizoroki-Heck and Suzuki-Miyaura coupling reactions. Appl Organomet Chem 30:590–595

    Article  CAS  Google Scholar 

  32. Paulino AT, Belfiore LA, Kubota LT, Muniz EC, Almeida VC, Tambourgi EB (2011) Effect of magnetite on the adsorption behavior of Pb (II), Cd (II), and Cu (II) in chitosan-based hydrogels. Desalination 275:187–196

    Article  CAS  Google Scholar 

  33. Taher F, Kamal F, Badawy N, Shrshr A (2018) Hierarchical magnetic/chitosan/graphene oxide 3D nanostructure as highly effective adsorbent. Mater Res Bull 97:361–368

    Article  CAS  Google Scholar 

  34. Doucet H, Hierso JC (2007) Palladium-based catalytic systems for the synthesis of conjugated enynes by Sonogashira reactions and related alkynylations. Angew Chem Int Ed 46:834–871

    Article  CAS  Google Scholar 

  35. Chinchilla R, Nájera C (2011) Recent advances in Sonogashira reactions. Chem Soc Rev 40:5084–5121

    Article  CAS  PubMed  Google Scholar 

  36. Mohajer F, Heravi MM, Zadsirjan V, Poormohammad N (2021) Copper-free Sonogashira cross-coupling reactions: an overview. RSC Adv 11:6885–6925

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Liu X, Ma Z, Xing J, Liu H (2004) Preparation and characterization of amino–silane modified superparamagnetic silica nanospheres. J Magn Magn Mater 270:1–6

    Article  CAS  Google Scholar 

  38. Silva V, Andrade P, Silva M, Valladares LDLS, Aguiar JA (2013) Synthesis and characterization of Fe3O4 nanoparticles coated with fucan polysaccharides. J Magn Magn Mater 343:138–143

    Article  CAS  Google Scholar 

  39. Van de Velde K, Kiekens P (2004) Structure analysis and degree of substitution of chitin, chitosan and dibutyrylchitin by FT-IR spectroscopy and solid state 13C NMR. Carbohyd Polym 58:409–416

    Article  Google Scholar 

  40. Zargarkazemi A, Sadeghi-Kiakhani M, Arami M, Bahrami SH (2015) Modification of wool fabric using prepared chitosan-cyanuric chloride hybrid. J Text Inst 106:80–89

    Article  CAS  Google Scholar 

  41. Vieira EG, Soares IV, Dias Filho NL, da Silva NC, Garcia EF, Bastos AC, Perujo SD, Ferreira TT, Rosa AH, Fraceto LF (2013) Preconcentration and determination of metal ions from fuel ethanol with a new 2, 2′-dipyridylamine bonded silica. J Colloid Interface Sci 391:116–124

    Article  CAS  PubMed  Google Scholar 

  42. Baruah D, Das RN, Hazarika S, Konwar D (2015) Biogenic synthesis of cellulose supported Pd (0) nanoparticles using hearth wood extract of Artocarpus lakoocha Roxb—a green, efficient and versatile catalyst for Suzuki and Heck coupling in water under microwave heating. Catal Commun 72:73–80

    Article  CAS  Google Scholar 

  43. Sadjadi S, Heravi MM, Kazemi SS (2018) Ionic liquid decorated chitosan hybridized with clay: a novel support for immobilizing Pd nanoparticles. Carbohyd Polym 200:183–190

    Article  CAS  Google Scholar 

  44. Wang H, Wang C, Yang Y, Zhao M, Wang Y (2017) H 3 PW 12 O 40/mpg-C 3 N 4 as an efficient and reusable bifunctional catalyst in one-pot oxidation–Knoevenagel condensation tandem reaction. Catal Sci Technol 7:405–417

    Article  Google Scholar 

  45. De Corte S, Hennebel T, De Gusseme B, Verstraete W, Boon N (2012) Bio-palladium: from metal recovery to catalytic applications. Microb Biotechnol 5:5–17

    Article  PubMed  Google Scholar 

  46. Zhao J, Zheng X, Liu Q, Xu M, Yang S, Zeng M (2020) Chitosan supported Pd0 nanoparticles encaged in Al or Al-Fe pillared montmorillonite and their catalytic activities in Sonogashira coupling reactions. Appl Clay Sci 195:105721

    Article  CAS  Google Scholar 

  47. Zhong S (2020) Incorporation of palladium catalyst inside cross-linked chitosan hybrid nanofibers for the Sonogashira reaction. Kinet Catal 61:480–485

    Article  CAS  Google Scholar 

  48. Zheng X, Zhao J, Liu Q, Xu M, Yang S, Zeng M, Qi C, Cao X, Wang B (2020) Chitosan modified Ti-PILC supported PdOx catalysts for coupling reactions of aryl halides with terminal alkynes. Int J Biol Macromol 158:67–74

    Article  CAS  PubMed  Google Scholar 

  49. Liu Q, Xu M, Zhao J, Yang Z, Qi C, Zeng M, Xia R, Cao X, Wang B (2018) Microstructure and catalytic performances of chitosan intercalated montmorillonite supported palladium (0) and copper (II) catalysts for Sonogashira reactions. Int J Biol Macromol 113:1308–1315

    Article  CAS  PubMed  Google Scholar 

  50. Zeng M, Yuan X, Zuo S, Qi C (2015) Novel chitosan-based/montmorillonite/palladium hybrid microspheres as heterogeneous catalyst for Sonogashira reactions. RSC Adv 5:37995–38000

    Article  CAS  Google Scholar 

  51. Chen Y, Yang S, Zhang T, Xu M, Zhao J, Zeng M, Sun K, Feng R, Yang Z, Zhang P (2022) Positron annihilation study of chitosan and its derived carbon/pillared montmorillonite clay stabilized Pd species nanocomposites. Polym Test 114:107689

    Article  CAS  Google Scholar 

  52. Daraie M, Heravi MM, Rangraz Y, Besharati Z (2021) Pd NPs supported on halloysite functionalized with Schiff base as an efficient catalyst for Sonogashira reaction. Sci Rep 11:1–11

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Rafiee.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rafiee, F., Rezaee, M. Functionalization of the magnetic chitosan support with dipyridylamine as a nitrogen-rich pincer ligand for Pd immobilization and investigation of catalytic efficiency in Sonogashira coupling. Polym. Bull. 80, 11139–11154 (2023). https://doi.org/10.1007/s00289-022-04597-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-022-04597-1

Keywords

Navigation