Skip to main content
Log in

Synthesis and characterization of multi-responsive poly(N-isopropylacrylamide)-sodium alginate-graphene oxide composite hydrogels

  • ORIGINAL PAPER
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

The multi-responsive ternary poly(N-isopropyl acrylamide) (PNIPAM)/ /sodium alginate (SA)/graphene oxide (GO) composite hydrogels were prepared. The influence of GO content on the microstructure and physical properties of the composite hydrogel was researched. The ternary composite hydrogels exhibited significantly larger mechanical strength and higher water uptake compared to binary PNIPAM/SA composite hydrogels. The effects of temperature, pH, and contact time on the adsorption capacity of rhodamine B (RB) for the PNIPAM/SA/GO ternary composite hydrogels were further investigated. The adsorption kinetic and isotherm for the adsorption behavior of the ternary composite hydrogel were well fitted with the pseudo-second-order kinetic model and Langmuir model, respectively. Besides, the PNIPAM/SA/GO ternary composite hydrogel could be easily removed from the dye solutions and reused without the obvious decrease of its performance. It indicated that the ternary composite hydrogel could serve as an effective adsorbent for the removal of organic pollutants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

References

  1. Zhang H, Li X, He G et al (2013) Preparation of magnetic composite hollow microsphere and its adsorption capacity for basic dyes. Ind Eng Chem Res 52:16902–16910

    Article  CAS  Google Scholar 

  2. Bakshi BR, Gutowski TG, Sekulic DP (2018) Claiming sustainability: requirements and challenges. ACS Sustainable Chem Eng 6:3632–3639

    Article  CAS  Google Scholar 

  3. Heimer BW, Paap SM, Sasan K et al (2019) 110th Anniversary: industrial process water treatment and reuse enabled by selective ion exchange materials. Ind Eng Chem Res 58:14873–14879

    Article  CAS  Google Scholar 

  4. Omer AM, Sadik WA, El-Demerdash AM et al (2021) Fabrication of semi-interpenetrated PVA/PAMPS hydrogel as a reusable adsorbent for cationic methylene blue dye: isotherms, kinetics and thermodynamics studies. Polym Bull 78:6649–6673

    Article  CAS  Google Scholar 

  5. Maleki H, Bertola V (2019) TiO2 nanofilms on polymeric substrates for the photocatalytic degradation of methylene blue. ACS Appl Nano Mater 2:7237–7244

    Article  CAS  Google Scholar 

  6. Sahu K, Bisht A, Kuriakose S, Mohapatra S (2020) Twodimensional CuO-ZnO nanohybrids with enhanced photocatalytic performance for removal of pollutants. J Phys Chem Solids 137:109223

    Article  CAS  Google Scholar 

  7. Neoh CH, Noor ZZ, Mutamim NSA et al (2016) Green technology in wastewater treatment technologies: integration of membrane bioreactor with various wastewater treatment systems. Chem Eng J 283:582–594

    Article  CAS  Google Scholar 

  8. Dehghani M, Nadeem H, Raghuwanshi VS et al (2020) ZnO/cellulose nanofiber composites for sustainable sunlightdriven dye degradation. ACS Appl Nano Mater 3:10284–10295

    Article  CAS  Google Scholar 

  9. Mohamed NA, Al-Harby NF, Almarshed MS (2020) Enhancement of adsorption of Congo red dye onto novel antimicrobial trimellitic anhydride isothiocyanate-cross-linked chitosan hydrogels. Polym Bull 77:6135–6160

    Article  CAS  Google Scholar 

  10. Xu H, Fang W, Xu L et al (2020) Batch preparation of CuO/ZnO-loaded nanofiber membranes for photocatalytic degradation of organic dyes. Langmuir 36:14189–14202

    Article  CAS  PubMed  Google Scholar 

  11. Atta A, Al-Lohedan H, Ezzat A et al (2017) Synthesis of zinc oxide nanocomposites using poly(ionic liquids) based on quaternary ammonium acrylamidomethyl propane sulfonate for water treatment. J Mol Liq 236:38–47

    Article  CAS  Google Scholar 

  12. Ranjithkumar V, Sangeetha S, Vairam S (2014) Synthesis of magnetic activated carbon/α-Fe2O3nanocomposite and its application in the removal of acid yellow 17 dye from water. J Hazard Mater 273:127–135

    Article  CAS  PubMed  Google Scholar 

  13. Ranjbari E, Bazgir S, Shirazi MMA (2020) Needleless electrospinning of poly(acrylic acid) superabsorbent: fabrication, characterization and swelling behavior. Polym Test 84:106403

    Article  CAS  Google Scholar 

  14. Natarajan S, Bajaj HC, Tayade RJ (2018) Recent advances based on the synergetic effect of adsorption for removal of dyes from waste water using photocatalytic process. J Environ Sci 65:201–222

    Article  CAS  Google Scholar 

  15. Adnan MAM, Phoon BL, Julkapli NM (2020) Mitigation of pollutants by chitosan/metallic oxide photocatalyst: a review. J Cleaner Prod 261:121190

    Article  Google Scholar 

  16. Weng Y, Zheng J, Zhang M (2021) Integration with MoO3 microrods as precursors for hierarchical polyaniline microtubes and composites for anionic dye removal in water treatment. New J Chem 45:14036–14041

    Article  CAS  Google Scholar 

  17. Ye X, Xu Q, Xu J (2019) Oxidant-templating fabrication of pure polypyrrole hydrogel beads as a highly efficient dye adsorbent. RSC Adv 9:5895–5900

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Cazetta AL, Pezoti O, Bedin KC et al (2016) Magnetic activated carbon derived from biomass waste by concurrent synthesis: efficient adsorbent for toxic dyes. ACS Sustainable Chem Eng 4:1058–1068

    Article  CAS  Google Scholar 

  19. Tanaka Y, Gong JP, Osada Y (2005) Novel hydrogels with excellent mechanical performance. Prog Polym Sci 30:1–9

    Article  CAS  Google Scholar 

  20. Zheng H, Lin N, He Y et al (2021) Self-healing, self-adhesive silk fibroin conductive hydrogel as a flexible strain sensor. ACS Appl Mater Interfaces 13:40013–40031

    Article  CAS  PubMed  Google Scholar 

  21. Takeno H, Inoguchi H, Hsieh WC (2020) Mechanical and structural properties of cellulose nanofiber/poly(vinyl alcohol) hydrogels cross-linked by a freezing/thawing method and borax. Cellulose 27:4373–4387

    Article  CAS  Google Scholar 

  22. Wang F, Du H, Liu Y et al (2021) Elastic polypyrrole hydrogels reinforced by TEMPO-oxidized cellulose for supercapacitors. Synthetic Met 282:116952

    Article  CAS  Google Scholar 

  23. Sikdar A, Deb SK, Gogoi A et al (2020) Polyaniline-graphene hydrogel hybrids via diffusion controlled surface polymerization for high performance supercapacitors. ACS Appl Nano Mater 3:12278–12287

    Article  CAS  Google Scholar 

  24. Zhao Z, Wang H, Huang H et al (2021) Graphene oxide/polypyrrole/polyaniline composite hydrogel synthesized by vapor-liquid interfacial method for supercapacitors”. Colloids Surf A 626:127125

    Article  CAS  Google Scholar 

  25. Hossain M, Afroz S, Islam MU et al (2021) Synthesis and characterization of polyvinyl alcohol/water-hyacinth (Eichhornia crassipes) based hydrogel by applying gamma radiation. J Polym Res 28:167

    Article  CAS  Google Scholar 

  26. Zhang X, Liu D, Yang L (2015) Self-assembled three-dimensional graphene-based materials for dye adsorption and catalysis. J Mater Chem A 3:10031–10037

    Article  CAS  Google Scholar 

  27. Zhang Z, Xiao F, Guo Y et al (2013) One-pot self-assembled three-dimensional TiO2-graphene hydrogel with improved adsorption capacities and photocatalytic and electrochemical activities. ACS Appl Mater Interfaces 5:2227–2233

    Article  CAS  PubMed  Google Scholar 

  28. Karim Z, Mathew AP, Grahn M et al (2014) Nanoporous membranes with cellulose nanocrystals as functional entity in chitosan: removal of dyes from water. Carbohydr Polym 112:668–676

    Article  CAS  PubMed  Google Scholar 

  29. Ou X, Yang X, Zheng J et al (2019) Free-standing graphene oxide-chitin nanocrystal composite membrane for dye adsorption and oil/water separation. ACS Sustainable Chem Eng 7:13379–13390

    Article  CAS  Google Scholar 

  30. Li C, Yan Y, Zhang Q et al (2019) Adsorption of Cd2+ and Ni2+ from aqueous single-metal solutions on graphene oxide-chitosan-poly(vinyl alcohol) hydrogels. Langmuir 35:4481–4490

    Article  CAS  PubMed  Google Scholar 

  31. Zhang Y, Yu J, Ren K et al (2019) Thermosensitive hydrogels as scaffolds for cartilage tissue engineering. Biomacromol 20:1478–1492

    Article  CAS  Google Scholar 

  32. Tavsanli B, Okay O (2019) Mechanically robust and stretchable silk/hyaluronic acid hydrogels. Carbohydr Polym 208:413–420

    Article  CAS  PubMed  Google Scholar 

  33. Gavel PK, Parmar HS, Tripathi V et al (2019) Investigations of anti-inflammatory activity of a peptide-based hydrogel using rat air pouch model. ACS Appl Mater Interfaces 11:2849–2859

    Article  CAS  PubMed  Google Scholar 

  34. Jing X, Mi H, Napiwocki BN et al (2017) Mussel-inspired electroactive chitosan/graphene oxide composite hydrogel with rapid self-healing and recovery behavior for tissue engineering. Carbon 125:557–570

    Article  CAS  Google Scholar 

  35. She X, Sun P, Yu X et al (2014) Fabrication of 3D polypyrrole/graphene oxide composite hydrogels with high performance swelling properties. J Inorg Organomet Polym 24:884–889

    Article  CAS  Google Scholar 

  36. Baruah S, Kumar S, Nayak B (2021) Optoelectronically suitable graphene oxide-decorated titanium oxide/polyaniline hybrid nanocomposites and their enhanced photocatalytic activity with methylene blue and rhodamine B dye. Polym Bull 78:1703–1720

    Article  CAS  Google Scholar 

  37. He Y, Zhang N, Gong Q et al (2012) Alginate/graphene oxide fibers with enhanced mechanical strength prepared by wet spinning. Carbohydr Polym 88:1100–1108

    Article  CAS  Google Scholar 

  38. Xiao D, He M, Liu Y et al (2020) Strong alginate/reduced graphene oxide composite hydrogels with enhanced dye adsorption performance. Polym Bull 77:6609–6623

    Article  CAS  Google Scholar 

  39. Cui W, Ji J, Cai YF et al (2015) Robust, anti-fatigue, and self-healing graphene oxide/hydrophobically associated composite hydrogels and their use as recyclable adsorbents for dye wastewater treatment. J Mater Chem A 3:17445–17458

    Article  CAS  Google Scholar 

  40. Lo C, Zhu D, Jiang H (2011) An infrared-light responsive graphene-oxide incorporated poly(N-isopropylacrylamide) hydrogel nanocomposite. Soft Matter 7:5604–5609

    Article  CAS  Google Scholar 

  41. Li Z, Shen J, Ma H et al (2012) Preparation and characterization of pH- and temperature-responsive hydrogels with surface-functionalized graphene oxide as the crosslinker. Soft Matter 8:3139–3145

    Article  CAS  Google Scholar 

  42. Hummers WS, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80:1339

    Article  CAS  Google Scholar 

  43. Ai S, Chen Y, Liu Y et al (2018) Facile synthesis of nitrogen-doped graphene aerogels for electrochemical detection of dopamine. Solid State Sci 86:6–11

    Article  CAS  Google Scholar 

  44. Han X, Liu Y, Xiong L et al (2019) Facile Assembly of polyaniline/graphene oxide composite hydrogels as adsorbent for Cr(VI) removal. Polym Composites 40:E1777–E1785

    Article  CAS  Google Scholar 

  45. Xu Y, Wu Q, Sun Y et al (2010) Three-dimensional self-assembly of graphene oxide and DNA into multifunctional hydrogels. ACS Nano 4:7358–7362

    Article  CAS  PubMed  Google Scholar 

  46. Balandin AA, Ghosh S, Bao W et al (2008) Superior thermal conductivity of single-layer graphene. Nano Lett 8:902–907

    Article  CAS  PubMed  Google Scholar 

  47. Shen J, Yan B, Li T et al (2012) Mechanical, thermal and swelling properties of poly(acrylic acid)–graphene oxide composite hydrogels. Soft Matter 8:1831–1836

    Article  CAS  Google Scholar 

  48. Liu R, Liang S, Tang XZ et al (2012) Tough and highly stretchable graphene oxide/polyacrylamide nanocomposite hydrogels. J Mater Chem 22:14160–14167

    Article  CAS  Google Scholar 

  49. Medhekar NV, Ramasubramaniam A, Ruoff RS et al (2010) Hydrogen bond networks in graphene oxide composite paper: structure and mechanical properties. ACS Nano 4:2300–2306

    Article  CAS  PubMed  Google Scholar 

  50. Ma JH, Xu YJ, Zhang QS et al (2007) Preparation and characterization of pH- and temperature-responsive semi-IPN hydrogels of carboxymethyl chitosan with poly (N-isopropyl acrylamide) crosslinked by clay. Colloid Polym Sci 285:479–484

    Article  CAS  Google Scholar 

  51. Guo X, Fei GT, Su H et al (2011) Synthesis of polyaniline micro/nanospheres by a copper(II)-catalyzed self-assembly method with superior adsorption capacity of organic dye from aqueous solution. J Mater Chem 21:8618–8625

    Article  CAS  Google Scholar 

  52. Tang T, Goossens K, Lu SJ et al (2020) Agar-reduced graphene oxide selectively adsorbs organic dyes and strengthens double-network hydrogels. RSC Adv 10:29287–29295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Ramesha GK, Kumara AV, Muralidhara HB et al (2011) Graphene and graphene oxide as effective adsorbents toward anionic and cationic dyes. J Colloid Interface Sci 361:270–277

    Article  CAS  PubMed  Google Scholar 

  54. Sun HM, Cao LY, Lu LH (2011) Magnetite/reduced graphene oxide nanocomposites: one step solvothermal synthesis and use as a novel platform for removal of dye pollutants. Nano Res 4:550–562

    Article  CAS  Google Scholar 

  55. Fan J, Shi Z, Lian M et al (2013) Mechanically strong graphene oxide/sodium alginate/polyacrylamide nanocomposite hydrogel with improved dye adsorption capacity. J Mater Chem A 1:7433–7443

    Article  CAS  Google Scholar 

  56. Sui ZY, Cui Y, Zhu JH et al (2013) Preparation of three dimensional graphene oxide-polyethylenimine porous materials as dye and gas adsorbents. ACS Appl Mater Interfaces 5:9172–9179

    Article  CAS  PubMed  Google Scholar 

  57. Geng Z, Lin Y, Yu X et al (2012) Highly efficient dye adsorption and removal: a functional hybrid of reduced graphene oxide-Fe3O4 nanoparticles as an easily regenerative adsorbent. J Mater Chem 22:3527–3535

    Article  CAS  Google Scholar 

  58. Chen Y, Dai G, Gao Q (2019) Starch Nanoparticles−graphene aerogels with high supercapacitor performance and efficient adsorption. ACS Sustainable Chem Eng 7:14064–14073

    Article  CAS  Google Scholar 

  59. Luo J, Lai J, Zhang N et al (2016) Tannic acid induced self-assembly of three-dimensional graphene with good adsorption and antibacterial properties. ACS Sustainable Chem Eng 4:1404–1413

    Article  CAS  Google Scholar 

  60. Tiwari JN, Mahesh K, Le NH et al (2013) Reduced graphene oxide-based hydrogels for the efficient capture of dye pollutants from aqueous solutions. Carbon 56:173–182

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The work was supported by Training Programs of Innovation and Entrepreneurship for Undergraduates, Graduate Innovative Fund of Wuhan Institute of Technology, Natural Science Foundation of Hubei Province (2021CFB507, 2021CFB169), the Hubei Provincial Department of Education Science and Technology Research program (B2021098), and the Open Project of Key Laboratory of Green Chemical Process of Ministry of Education (GCX202107).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Liang Li or Xianghua Yu.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 65 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Yang, F., Huang, H. et al. Synthesis and characterization of multi-responsive poly(N-isopropylacrylamide)-sodium alginate-graphene oxide composite hydrogels. Polym. Bull. 80, 10825–10842 (2023). https://doi.org/10.1007/s00289-022-04581-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-022-04581-9

Keywords

Navigation