Skip to main content
Log in

Effects of SWCNT content on the electrospinning behavior and structure formation of a PVDF/SWCNT composite web

  • ORIGINAL PAPER
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

In this study, the effect of the addition of conductive materials on the solution properties, electrospinning behavior, and electrospun web structure of polyvinylidene fluoride (PVDF) was investigated. A PVDF/single-walled carbon nanotube (SWCNT) composite was prepared by adding various amounts of SWCNT to a PVDF solution, and a PVDF/SWCNT web was produced by electrospinning. To fabricate a polymer solution complex with a conductive material, it is important to understand the change in electrospinning behavior according to the properties of the solution. The properties of the composite solution were analyzed with respect to the SWCNT ratio in the solution, and the real-time effects on electrospinning behavior were compared and analyzed. The electrospinning behavior considerably differed depending on the properties of the solution. In this study, SWCNT was added in the range of 0–0.02%, and as the SWCNT content increased, the collection area decreased by 25%, the fiber diameter increased from 1.69 ± 0.88 to 1.83 ± 1.22 μm, and the PVDF fiber β-phase content reduced by approximately 6%. The PVFD/SWCN spinning behavior difference analysis and structure formation change according to the SWCNT ratio are useful for controlling the diameter, collection area, and crystallinity in the fiber process of PVDF. They are also expected to be useful for controlling the electrospinning behavior and fiber formation of various polymer materials based on the addition of conductive materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Saxena P, Shukla P (2021) A comprehensive review on fundamental properties and applications of poly(vinylidene fluoride) (PVDF). Adv Compos Hybrid Mater 4:8–26. https://doi.org/10.1007/s42114-021-00217-0

    Article  CAS  Google Scholar 

  2. Sukumaran S, Chatbouri S, Rouxel D et al (2020) Recent advances in flexible PVDF based piezoelectric polymer devices for energy harvesting applications. J Intell Mater Syst Struct 32:746–780. https://doi.org/10.1177/1045389x20966058

    Article  CAS  Google Scholar 

  3. Pornea AM, Puguan JMC, Deonikar VG et al (2020) Fabrication of multifunctional wax infused porous PVDF film with switchable temperature response surface and anti corrosion property. J Ind Eng Chem 82:211–219. https://doi.org/10.1016/j.jiec.2019.10.015

    Article  CAS  Google Scholar 

  4. Barrau S, Ferri A, Da Costa A et al (2018) Nanoscale investigations of alpha- and gamma-crystal phases in PVDF-based nanocomposites. ACS Appl Mater Interfaces 10:13092–13099. https://doi.org/10.1021/acsami.8b02172

    Article  CAS  PubMed  Google Scholar 

  5. Pickford T, Gu X, Heeley EL et al (2019) Effects of an ionic liquid and processing conditions on the β-polymorph crystal formation in poly(vinylidene fluoride). CrystEngComm 21:5418–5428. https://doi.org/10.1039/c9ce01051c

    Article  CAS  Google Scholar 

  6. Bairagi S, Ali SW (2019) A unique piezoelectric nanogenerator composed of melt-spun PVDF/KNN nanorod-based nanocomposite fibre. Eur Polym J 116:554–561. https://doi.org/10.1016/j.eurpolymj.2019.04.043

    Article  CAS  Google Scholar 

  7. Luo M, Luo H, Axinte D et al (2018) A wireless instrumented milling cutter system with embedded PVDF sensors. Mech Syst Signal Process 110:556–568. https://doi.org/10.1016/j.ymssp.2018.03.040

    Article  Google Scholar 

  8. Kalimuldina G, Turdakyn N, Abay I et al (2020) A review of piezoelectric PVDF film by electrospinning and its applications. Sensors (Basel). https://doi.org/10.3390/s20185214

    Article  PubMed  Google Scholar 

  9. Sanyal A, Sinha-Ray S (2021) Ultrafine PVDF nanofibers for filtration of air-borne particulate matters: a comprehensive review. Polymers (Basel). https://doi.org/10.3390/polym13111864

    Article  PubMed  Google Scholar 

  10. Al Rai A, Stojanovska E, Fidan G et al (2020) Structure and performance of electroblown PVDF-based nanofibrous electret filters. Polym Eng Sci 60:1186–1193. https://doi.org/10.1002/pen.25372

    Article  CAS  Google Scholar 

  11. Luiso S, Henry JJ, Pourdeyhimi B et al (2021) Meltblown polyvinylidene difluoride as a Li-ion battery separator. ACS Appl Polym Mater 3:3038–3048. https://doi.org/10.1021/acsapm.1c00221

    Article  CAS  Google Scholar 

  12. Valverde A, Gonçalves R, Silva MM et al (2020) Metal–organic framework based PVDF separators for high rate cycling lithium-ion batteries. ACS Appl Energy Mater 3:11907–11919. https://doi.org/10.1021/acsaem.0c02044

    Article  CAS  Google Scholar 

  13. Hall D (2001) Review nonlinearity in piezoelectric ceramics. J Mater Sci 36:4575–4601. https://doi.org/10.1023/A:1017959111402

    Article  CAS  Google Scholar 

  14. Lim J, Kim HS (2021) Effects of SWCNT/PVDF composite web behavior on acoustic piezoelectric property. Sens Actuators A Phys. https://doi.org/10.1016/j.sna.2021.112840

    Article  Google Scholar 

  15. Lee C, Tarbutton JA (2019) Polyvinylidene fluoride (PVDF) direct printing for sensors and actuators. Int J Adv Manuf Technol 104:3155–3162. https://doi.org/10.1007/s00170-019-04275-z

    Article  Google Scholar 

  16. Ghosal K, Agatemor C, Špitálsky Z et al (2019) Electrospinning tissue engineering and wound dressing scaffolds from polymer-titanium dioxide nanocomposites. Chem Eng J 358:1262–1278. https://doi.org/10.1016/J.CEJ.2018.10.117

    Article  CAS  Google Scholar 

  17. Altinkok C, Acik G, Daglar O et al (2022) A facile approach for the fabrication of antibacterial nanocomposites: a case study for AgNWs/poly(1,4-cyclohexanedimethylene acetylene dicarboxylate) composite networks by aza-Michael addition. Eur Polym J. https://doi.org/10.1016/j.eurpolymj.2022.111130

    Article  Google Scholar 

  18. Armentano I, Puglia D, Luzi F et al (2018) Nanocomposites based on biodegradable polymers. Materials (Basel). https://doi.org/10.3390/ma11050795

    Article  PubMed  Google Scholar 

  19. Son WK, Youk JH, Park WH (2006) Antimicrobial cellulose acetate nanofibers containing silver nanoparticles. Carbohydr Polym 65:430–434. https://doi.org/10.1016/j.carbpol.2006.01.037

    Article  CAS  Google Scholar 

  20. Choudhury A (2009) Polyaniline/silver nanocomposites: dielectric properties and ethanol vapour sensitivity. Sens Actuators B Chem 138:318–325. https://doi.org/10.1016/j.snb.2009.01.019

    Article  CAS  Google Scholar 

  21. Acik G (2021) Fabrication of polypropylene fibers possessing quaternized ammonium salt based on the combination of CuAAC click chemistry and electrospinning. React Funct Polym. https://doi.org/10.1016/j.reactfunctpolym.2021.105035

    Article  Google Scholar 

  22. Ruan L, Yao X, Chang Y et al (2018) Properties and applications of the beta phase poly(vinylidene fluoride). Polymers (Basel). https://doi.org/10.3390/polym10030228

    Article  PubMed  Google Scholar 

  23. Gade H, Nikam S, Chase GG et al (2021) Effect of electrospinning conditions on β-phase and surface charge potential of PVDF fibers. Polymer. https://doi.org/10.1016/j.polymer.2021.123902

    Article  Google Scholar 

  24. Zaarour B, Zhu L, Huang C et al (2019) Enhanced piezoelectric properties of randomly oriented and aligned electrospun PVDF fibers by regulating the surface morphology. J Appl Polym Sci. https://doi.org/10.1002/app.47049

    Article  Google Scholar 

  25. Faraz M, Singh HH, Khare N (2022) A progressive strategy for harvesting mechanical energy using flexible PVDF-rGO-MoS2 nanocomposites film-based piezoelectric nanogenerator. J Alloys Compd. https://doi.org/10.1016/j.jallcom.2021.161840

    Article  Google Scholar 

  26. Eun JH, Sung SM, Kim MS et al (2021) Effect of MWCNT content on the mechanical and piezoelectric properties of PVDF nanofibers. Mater Des. https://doi.org/10.1016/j.matdes.2021.109785

    Article  Google Scholar 

  27. Anand S, Pauline S (2021) Electromagnetic interference shielding properties of BaCo2Fe16O27 nanoplatelets and RGO reinforced PVDF polymer composite flexible films. Adv Mater Interfaces 8:2001810. https://doi.org/10.1002/admi.202001810

    Article  CAS  Google Scholar 

  28. Qi S, Craig D (2016) Recent developments in micro- and nanofabrication techniques for the preparation of amorphous pharmaceutical dosage forms. Adv Drug Deliv Rev 100:67–84. https://doi.org/10.1016/j.addr.2016.01.003

    Article  CAS  PubMed  Google Scholar 

  29. Yousefzade O, Katsarava R, Puiggali J (2020) Biomimetic hybrid systems for tissue engineering. Biomimetics (Basel). https://doi.org/10.3390/biomimetics5040049

    Article  PubMed  Google Scholar 

  30. Jang S, Song S, Lim JH et al (2020) Application of various metal–organic frameworks (MOFs) as catalysts for air and water pollution environmental remediation. Catalysts. https://doi.org/10.3390/catal10020195

    Article  Google Scholar 

  31. Choi S, Kim HR, Jeong YK et al (2018) Mechanism of electrospinning for poly(amic acid)/polyacrylonitrile fiber fabrication. J Macromol Sci Part B 57:222–230. https://doi.org/10.1080/00222348.2018.1441221

    Article  CAS  Google Scholar 

  32. Sorayani Bafqi MS, Bagherzadeh R, Latifi M (2015) Fabrication of composite PVDF-ZnO nanofiber mats by electrospinning for energy scavenging application with enhanced efficiency. J Polym Res. https://doi.org/10.1007/s10965-015-0765-8

    Article  Google Scholar 

  33. Sharma M, Madras G, Bose S (2014) Process induced electroactive beta-polymorph in PVDF: effect on dielectric and ferroelectric properties. Phys Chem Chem Phys 16:14792–14799. https://doi.org/10.1039/c4cp01004c

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Technology Innovation Program (or Industrial Strategic Technology Development Program) (20017666, Development of technology to manufacture nanofiber separators for future automobiles using thermoplastic materials), funded by the Ministry of Trade, Industry & Energy (MOTIE, Korea).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Han Seong Kim.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lim, J., Park, H., Choi, S. et al. Effects of SWCNT content on the electrospinning behavior and structure formation of a PVDF/SWCNT composite web. Polym. Bull. 80, 11317–11327 (2023). https://doi.org/10.1007/s00289-022-04578-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-022-04578-4

Keywords

Navigation