Skip to main content

Advertisement

Log in

Facile synthesis of β-cyclodextrin-cyclophosphamide complex-loaded hydrogel for controlled release drug delivery

  • ORIGINAL PAPER
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

The research aims to develop cyclophosphamide-β-cyclodextrin complex-loaded hydrogels via free radical polymerization reaction by using hydroxypropyl methylcellulose (HPMC) as polymer, acrylic acid as monomer, ammonium per sulfate as initiator, and ethylene glycol dimethyl acrylate (EGDMA) as crosslinker. Nine formulations (HA1–HA9) were formulated to analyze the influence of process control parameters on cyclophosphamide release profile. Optimized preparation condition was investigated depending on substrate concentration, pH, and temperature. FTIR, DSC, TGA, and XRD were used to evaluate the compatibility of the excipients with cyclophosphamide, thermal stability of hydrogels, nature of pure cyclophosphamide, and drug-loaded hydrogel disks. Results showed that increasing concentration of polymer and monomer enhanced hydrogel swelling. However, increased crosslinker concentration resulted in decreased hydrogel swelling. In-vitro drug release studies showed maximum cyclophosphamide release occurred at pH 7.4. An acute oral toxicity assessment on rabbits revealed that the hydrogels were biocompatible with the biological system. This study proved that HPMC-co-AA (HA6 containing 0.6 gm HPMC, 0.9 gm acrylic acid, and 0.8 gm EGDMA)-based hydrogels can be an ideal candidate for achieving prolonged cyclophosphamide release.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. Laftah WA, Hashim S, Ibrahim AN (2011) Polymer hydrogels: a review. Polym Plast Technol Eng 50(14):1475–1486

    Article  CAS  Google Scholar 

  2. Varaprasad K, Raghavendra GM, Jayaramudu T, Yallapu MM, Sadiku R (2017) A mini review on hydrogels classification and recent developments in miscellaneous applications. Mater Sci Eng C 79:958–971

    Article  CAS  Google Scholar 

  3. Thatiparti TR, Von Recum HA (2010) Cyclodextrin complexation for affinity-based antibiotic delivery. Macromol Biosci 10:82–90

    Article  CAS  PubMed  Google Scholar 

  4. Blanco-Fernandez B, Lopez-Viota M, Concheiro A, Alvarez-Lorenzo C (2011) Synergistic performance of cyclodextrin-agar hydrogels for ciprofloxacin delivery and antimicrobial effect. Carbohydr Polym 85:765–774

    Article  CAS  Google Scholar 

  5. Zafar N, Fessi H, Elaissari A (2014) Cyclodextrin containing biodegradable particles: from preparation to drug delivery applications. Int J Pharm 461(1–2):351–366

    Article  CAS  PubMed  Google Scholar 

  6. Rodriguez-Tenreiro C, Alvarez-Lorenzo C, Rodriguez-Perez A, Concheiro A, Torres-Labandeira JJ (2006) New cyclodextrin hydrogels cross-linked with diglycidylethers with a high drug loading and controlled release ability. Pharm Res 23:121–130

    Article  CAS  PubMed  Google Scholar 

  7. Folch-Cano C, Yazdani-Pedram M, Olea-Azar C (2014) Inclusion and functionalization of polymers with cyclodextrins: current applications and future prospects. Molecules 19:14066–14079

    Article  PubMed  PubMed Central  Google Scholar 

  8. Xin J, Guo Z, Chen X, Jiang W, Li J, Li M (2010) Study of branched cationic β-cyclodextrin polymer/indomethacin complex and its release profile from alginate hydrogel. Int J Pharm 386:221–228

    Article  CAS  PubMed  Google Scholar 

  9. Zafar N, Fessi H, Elaissari A (2014) Colloidal particles containing labeling agents and cyclodextrins for theranostic applications. Int J Pharm 472(1–2):118–129

    Article  CAS  PubMed  Google Scholar 

  10. Zafar N, Robin S, Viennet C, Humbert P, Valour JP, Agusti G, Fessi H, Elaissari A (2017) Sponge like microparticles for drug delivery and cosmeto-textile use: formulation and human skin penetration. Int J Pharm 532(1):623–634

    Article  CAS  PubMed  Google Scholar 

  11. Rehman U, Sarfraz RM, Mahmood A, Zafar N, Ashraf MU (2021) Chitosan/agarose-g-poly (methacrylate) pH responsive polymeric blend: a dais for controlled delivery of capecitabine. Polym Adv Technol 32(9):3782–3794

    Article  CAS  Google Scholar 

  12. Dharmalingam K, Anandalakshmi R (2019) Fabrication, characterization and drug loading efficiency of citric acid crosslinked NaCMC-HPMC hydrogel films for wound healing drug delivery applications. Int J Biol Macromol 134:815–829

    Article  CAS  PubMed  Google Scholar 

  13. Tsao JY, Tsai HH, Wu CP et al (2010) Release of paeonol-β-CD complex from thermo-sensitive poly (N-isopropylacrylamide) hydrogels. Int J Pharm 402:123–128

    Article  CAS  PubMed  Google Scholar 

  14. Bashir S, Zafar N, Lebaz N, Mahmood A, Elaissari A (2020) Hydroxypropyl methylcellulose-based hydrogel copolymeric for controlled delivery of galantamine hydrobromide in dementia. Processes 8:1350

    Article  Google Scholar 

  15. Hamidi M, Azadi A, Rafiei P (2008) Hydrogel nanoparticles in drug delivery. Adv Drug Deliv Rev 60:1638–1649

    Article  CAS  PubMed  Google Scholar 

  16. Bozzuto G, Molinari A (2015) Liposomes as nanomedical devices. Int J Nanomed 10:975

    Article  CAS  Google Scholar 

  17. Ijaz H, Tulain UR, Azam F, Qureshi J (2019) Thiolation of arabinoxylan and its application in the fabrication of pH-sensitive thiolated arabinoxylan grafted acrylic acid copolymer. Drug Dev Ind Pharm 45(5):754–766

    Article  CAS  PubMed  Google Scholar 

  18. Akhlaq M, Idrees N, Nawaz A, Jalil A, Zafar N, Adeel M, Ullah I, Mukhtiar M, Afridi HH (2020) HPMC-co-acrylic acid dexibuprofen once-daily oral hydrogels. J Macromol Sci Part A 57(9):663–674

    Article  CAS  Google Scholar 

  19. Ranjha NM, Qureshi UF (2014) Preparation and characterization of crosslinkedacrylic acid/hydroxypropyl methyl cellulose hydrogels for drug delivery. Int J Pharm Pharm Sci 6(400):410

    Google Scholar 

  20. Zołtowska K, Piotrowska U, Oledzka E, Luchowska U, Sobczak M, Bocho-Janiszewska A (2017) Development of biodegradable polyesters with various microstructures for highly controlled release of epirubicin and cyclophosphamide. Eur J Pharm Sci 96(1):440–8

    Article  PubMed  Google Scholar 

  21. Ijaz H, Tulain UR, Qureshi J (2018) Formulation and in vitro evaluation of pH-sensitive cross-linked xanthan gum-grafted acrylic acid copolymer for controlled delivery of perindopril erbumine (PE). Polym Plast Technol Eng 57(5):459–470

    Article  CAS  Google Scholar 

  22. Hebeish A, Hashem M, El-Hady MMA, Sharaf S (2013) Development of CMC hydrogels loaded with silver nano-particles for medical applications. Carbohydr Polym 92:407–413

    Article  CAS  PubMed  Google Scholar 

  23. Hu X, Sun M, Li Y, Tang G (2017) Evaluation of molecular chaperone drug function: Regorafenib and β-cyclodextrins. Colloids Surf B Biointerfaces 153(1):61–68

    Article  CAS  PubMed  Google Scholar 

  24. Malik NS, Ahmad M, Minhas MU (2017) Cross-linked β-cyclodextrin and carboxymethyl cellulose hydrogels for controlled drug delivery of acyclovir. Plos One 12(2):1–17

    Article  Google Scholar 

  25. Mahmood A, Ahmad M, Sarfraz RM, Minhas MU (2016) β-CD based hydrogel microparticulate system to improve the solubility of acyclovir: Optimization through in-vitro, in-vivo and toxicological evaluation. J Drug Deliv Sci Technol 36:75–88

    Article  CAS  Google Scholar 

  26. Vega-Chacón J, Tarhini M, Lebaz N, Jafelicci M, Zine N, Errachid A (2020) Elaissari, protein-silica hybrid submicron particles: preparation and characterization. Chem Afr 3:1–9

    Google Scholar 

  27. Ouanji F, Ellouzi I, Kacimi M, Ziyad M (2019) Ca-hydroxyzincate: synthesis and enhanced photocatalytic activity for the degradation of methylene blue under uv–light irradiation. Chem Afr 2:395–400

    Article  CAS  Google Scholar 

  28. Shin M-S, Kim SJ, Kim IY, Kim NG, Song CG, Kim SI (2002) Swollen behavior of crosslinked network hydrogels based on poly (vinyl alcohol) and polydimethylsiloxane. J Appl Polym Sci 85:957–964

    Article  CAS  Google Scholar 

  29. Ahmed EM, Zahran MA, Aggor FS, Elhady SA, Nada SS (2016) Synthesis and swelling characterization of carboxymethyl cellulose-g-poly (acrylic acid-co–acrylamide) hydrogel and their application in agricultural field. Int J Chem Tech Res 9:270–281

    CAS  Google Scholar 

  30. Abbasi M, Sohail M, Minhas MU, Khan S, Hussain Z, Mahmood A, Shah SA, Kousar M (2019) Novel biodegradable pH-sensitive hydrogels: an efficient controlled release system to manage ulcerative colitis. Int J Biol Macromol 136:83–96

    Article  CAS  PubMed  Google Scholar 

  31. Jalababu R, Rao KK, Rao BS (2020) Dual responsive GG-g-PNPA/PIPAM based novel hydrogels for the controlled release of anti- cancer agent and their swelling and release kinetics. J Polym Res 27:83

    Article  CAS  Google Scholar 

  32. Khanum H, Ullah K, Murtaza M, Shujaat AK (2018) Fabrication and in vitro characterization of HPMC-g-poly (AMPS) hydrogels loaded with loxoprofen sodium. Int J Biol Macromol 120:1624–1631

    Article  CAS  PubMed  Google Scholar 

  33. Ranjha NM, Qureshi UF (2014) Preparation and characterization of crosslinked acrylic acid/hydroxypropyl methyl cellulose hydrogels for drug delivery. Int J Pharm Sci 6(400):410

    Google Scholar 

  34. Stability testing of active pharmaceutical ingredients and finished pharmaceutical products. International Council for Harmonization (Annex-10 ICH) Guideline

  35. Ijaz H, Tulain UR, Minhas MU, Mahmood A, Sarfraz RM, Erum A, Danish Z (2022) Design and in vitro evaluation of pH-sensitive crosslinked chitosan-grafted acrylic acid copolymer (CS-co-AA) for targeted drug delivery. Int J Polym Mater Polym Biomater 71(5):336–348

    Article  CAS  Google Scholar 

  36. Ijaz H, Qureshi J, Danish Z, Zaman M, Abdel-Daim M, Bashir I (2017) Design and evaluation of bilayer matrix tablet of metoprolol tartrate and lisinopril maleate. Adv Polym Technol 36(2):152–159

    Article  CAS  Google Scholar 

  37. Akhtar MF, Ranjha NM, Hanif M (2015) Effect of ethylene glycol dimethacrylate on swelling and on metformin hydrochloride release behavior of chemically crosslinked pH–sensitive acrylic acid–polyvinyl alcohol hydrogel. DARU J Pharm Sci 23(1):1–10

    Article  Google Scholar 

  38. Han C, Wang Y, Liu R, Ran B, Li W (2022) Structural characterization and protective effect of Lonicerae flos polysaccharide on cyclophosphamide-induced immunosuppression in mice. Ecotoxicol Environ Saf 30:113–120

    Google Scholar 

  39. Vu TH, Le THT, Nguyen HT, Nguyen TT, Nguyen VK, Pham TTH, Nguyen TL (2022) Effects of emulsifiers on engineering and microstructural properties of hpmc/shellac composite films. In Materials Science Forum, Trans Tech Publications Ltd, 1051: 181–188

  40. Tayyab A, Mahmood A, Ijaz H, Sarfraz RM, Zafar N, Danish Z (2022) Formulation and optimization of captopril-loaded microspheres based compressed tablets: in vitro evaluation. Int J Polym Mater Polym Biomater 71(4):233–245

    Article  CAS  Google Scholar 

  41. Varshney L, Dodke PB (2004) Radiation effect studies on anticancer drugs, cyclophosphamide and doxorubicin for radiation sterilization. Radiat Phys Chem 71(6):1103–1111

    Article  CAS  Google Scholar 

  42. Danish Z, Ijaz H, Razzaque G, Aslam MM (2021) Facile synthesis of three-dimensional porous hydrogel and its evaluation. Polym Bull, 1–22

  43. Shariatinia Z, Ziba M (2022) Smart pH-responsive drug release systems based on functionalized chitosan nanocomposite hydrogels. Surf Interfaces 29:101739

    Article  CAS  Google Scholar 

  44. Minhas MU et al (2018) Synthesis and characterization of biodegradable hydrogels for oral delivery of 5-fluorouracil targeted to colon: screening with preliminary in vivo studies. Adv PolymTechnol 37(1):221–229

    CAS  Google Scholar 

  45. Firyal MA, Hameed MA (2018) Controlled drug release of grafted pectin. J Drug Deliv Ther 8(5-s):215–222

    Article  Google Scholar 

  46. Bashir S, Zafar N, Lebaz N, Mahmood A, Elaissari A (2020) Hydroxypropyl methylcellulose-based hydrogel copolymeric for controlled delivery of galantamine hydrobromide in dementia. Processes 8(11):1350

    Article  Google Scholar 

  47. Ali L, Ahmad M, Aamir MN, Minhas MU, Shah HH, Shah MA (2020) Cross linked pH-sensitive pectin and acrylic acid based hydrogels for controlled delivery of metformin. Pak J Pharm Sci 33(4):1483–1491

    CAS  PubMed  Google Scholar 

  48. Azam F, Ijaz H, Qureshi J (2021) Functionalized crosslinked interpenetrating polymeric network for pH responsive colonic drug delivery. Int J Polym Mater Polym Biomater 70(9):646–655

    Article  CAS  Google Scholar 

  49. Sadeghi M (2011) Pectin-based biodegradable hydrogels with potential biomedical applications as drug delivery systems. J Biomater Nanobiotechnol 2(1):36

    Article  CAS  Google Scholar 

  50. Pandey M, Choudhury H, D/OSegar Singh SK, Chetty Annan N, Bhattamisra SK, Gorain B, Mohd Amin MCI (2021) Budesonide-loaded pectin/polyacrylamide hydrogel for sustained delivery: fabrication, characterization and in vitro release kinetics. Molecules 26(9):2704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nadiah Zafar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zafar, N., Mahmood, A., Sarfraz, R.M. et al. Facile synthesis of β-cyclodextrin-cyclophosphamide complex-loaded hydrogel for controlled release drug delivery. Polym. Bull. 80, 10939–10971 (2023). https://doi.org/10.1007/s00289-022-04567-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-022-04567-7

Keywords

Navigation