Skip to main content
Log in

Development of biodegradable biocomposite films from poly(lactic acid), natural rubber and rice straw

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

This work aims to develop sustainable and biodegradable biocomposite films from renewable and environmentally friendly materials including poly(lactic acid) (PLA), natural rubber (NR), and rice straw (RS). The cast film extrusion method was used to produce all the films in the current work. The PLA/NR blend with 30 percent by weight (wt%) of NR, which showed the highest elongation at break of 372.10%, was selected for compounding with RS powder. The amounts of RS used in PLA/NR/RS biocomposite preparation were varied from 3 to 10 wt% of the total weight of the blend. The tensile properties of the film were decreased by the incorporation of RS fiber. However, ductile fracture behavior could still be observed if the RS content did not exceed 5 wt%. The biodegradability of all films was determined by measuring the percent weight loss of the films after soil burial. With an increase in RS amount, the degradation of the films was faster. The scanning electron microscopy (SEM) analysis showed that all PLA/NR/RS bicomposite films had a lot of cracks and holes on their surfaces. Gel permeation chromatography (GPC) showed that the molecular weight of PLA in all films went down after they were buried in soil. Also, the biocomposite films in this study demonstrate the potential to be used in agricultural products like planting bags.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Danso D, Chow J, Streit WR, Drake HL (2019) Plastics: environmental and biotechnological perspectives on microbial degradation. Appl Environ Microbiol 85:e01095-e1119. https://doi.org/10.1128/AEM.01095-19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Naser AZ, Deiab ID, Basil M (2021) Poly(lactic acid) (PLA) and polyhydroxyalkanoates (PHAs), green alternatives to petroleum-based plastics: a review. RSC Adv 11:17151–17196. https://doi.org/10.1039/D1RA02390J

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Mokhena TC, Sefadi JS, Sadiku ER et al (2018) Thermoplastic processing of PLA/cellulose nanomaterials composites. Polymers 10:1363. https://doi.org/10.3390/polym10121363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Farah S, Anderson DG, Langer R (2016) Physical and mechanical properties of PLA, and their functions in widespread applications — A comprehensive review. Adv Drug Deliv Rev 107:367–392. https://doi.org/10.1016/j.addr.2016.06.012

    Article  CAS  PubMed  Google Scholar 

  5. Phetphaisit CW, Wapanyakul W, Phinyocheep P (2019) Effect of modified rubber powder on the morphology and thermal and mechanical properties of blown poly(lactic acid)–hydroxyl epoxidized natural rubber films for flexible film packaging. J Appl Polym Sci 136:47503. https://doi.org/10.1002/app.47503

    Article  CAS  Google Scholar 

  6. Jiang Y, Yan C, Wang K et al (2019) Super-toughed PLA blown film with enhanced gas barrier property available for packaging and agricultural applications. Materials 12:1663. https://doi.org/10.3390/ma12101663

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Mallegni N, Phuong TV, Coltelli M-B, Cinelli P, Lazzeri A (2018) Poly(lactic acid) (PLA) based tear resistant and biodegradable flexible films by blown film extrusion. Materials 11:148. https://doi.org/10.3390/ma11010148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Swaroop C, Shukla M (2018) Mechanical, optical and antibacterial properties of polylactic acid/polyethylene glycol films reinforced with MgO Nanoparticles. Mater Today Proc 5:20711–20718. https://doi.org/10.1016/j.matpr.2018.06.455

    Article  CAS  Google Scholar 

  9. Yang W, Weng Y, Puglia D (2020) Poly(lactic acid)/lignin films with enhanced toughness and anti-oxidation performance for active food packaging. Int J Biol Macromol 144:102–110. https://doi.org/10.1016/j.ijbiomac.2019.12.085

    Article  CAS  PubMed  Google Scholar 

  10. Zengwen C, Lu Z, Pan H (2020) Structuring poly (lactic acid) film with excellent tensile toughness through extrusion blow molding. Polymer 187:122091. https://doi.org/10.1016/j.polymer.2019.122091

    Article  CAS  Google Scholar 

  11. Park B-S, Song JC, Park DH, Yoon K-B (2012) PLA/chain-extended PEG blends with improved ductility. J Appl Polym Sci 123:2360–2367. https://doi.org/10.1002/app.34823

    Article  CAS  Google Scholar 

  12. Nofar M, Salehiyan R, Ciftci U, Jalali A, Durmuş A (2020) Ductility improvements of PLA-based binary and ternary blends with controlled morphology using PBAT, PBSA, and nanoclay. Compos B Eng 182:107661. https://doi.org/10.1016/j.compositesb.2019.107661

    Article  CAS  Google Scholar 

  13. Zych A, Perotto G, Trojanowska D et al (2020) Super tough polylactic acid plasticized with epoxidized soybean oil methyl ester for flexible food packaging. ACS Appl Polym Mater 3:5087–5095. https://doi.org/10.1021/acsapm.1c00832

    Article  CAS  Google Scholar 

  14. Sookprasert P, Hinchiranan N (2017) Morphology, mechanical and thermal properties of poly(lactic acid) (PLA)/natural rubber (NR) blends compatibilized by NR-graft-PLA. J Mater Res 32:788–800. https://doi.org/10.1557/jmr.2017.9

    Article  CAS  Google Scholar 

  15. Srisuwan S, Ruksakulpiwat Y, Chumsamrong P (2020) Effect of triblock copolymers based on liquid natural rubber and low molecular weight poly(lactic acid) on physical properties of poly(lactic acid)/natural rubber blend. Polym Bull 78:1253–1273. https://doi.org/10.1007/s00289-020-03158-8

    Article  CAS  Google Scholar 

  16. Jaratrotkamjorn R, Khaokong C, Tanrattanakul V (2012) Toughness enhancement of poly(lactic acid) by melt blending with natural rubber. J Appl Polym Sci. 124:5027–5036. https://onlinelibrary.wiley.com/doi/abs/https://doi.org/10.1002/app.35617

  17. Mohammad NNB, Arsad A, Rahmat AR, Abdullah Sani NS, Ali Mohsin ME (2016) Influence of compatibilizer on the structure properties of polylactic acid/natural rubber blends. Polym Sci Ser A 58:177–185. https://doi.org/10.1134/S0965545X16020164

    Article  CAS  Google Scholar 

  18. Bitinis N, Verdejo R, Cassagnau P, Lopez-Manchado MA (2011) Structure and properties of polylactide/natural rubber blends. Mater Chem Phys 129:823–831. https://doi.org/10.1016/j.matchemphys.2011.05.016

    Article  CAS  Google Scholar 

  19. Fekete I, Ronkay F, Lendvai L (2021) Highly toughened blends of poly(lactic acid) (PLA) and natural rubber (NR) for FDM-based 3D printing applications: the effect of composition and infill pattern. Polym Test 99:107205. https://doi.org/10.1016/j.polymertesting.2021.107205

    Article  CAS  Google Scholar 

  20. Hajba S, Tábi T (2017) Poly(lactic acid)/natural rubber blends. Mater Sci Forum 885:298–302. https://doi.org/10.4028/www.scientific.net/MSF.885.298

    Article  Google Scholar 

  21. Gong Z, Huang J, Fan J et al (2022) A super-toughened poly(lactic acid)-based thermoplastic vulcanizate through incorporating modified SiO2 nanoparticles. Compos Sci Technol 226:109558. https://doi.org/10.1016/j.compscitech.2022.109558

    Article  CAS  Google Scholar 

  22. Shah AA, Hasan F, Hameed A, Ahmed S (2008) Biological degradation of plastics: a comprehensive review. Biotechnol Adv 26:246–265. https://doi.org/10.1016/j.biotechadv.2007.12.005

    Article  CAS  PubMed  Google Scholar 

  23. Husárová L (2014) Identification of important abiotic and biotic factors in the biodegradation of poly(l-lactic acid). Int J Biol Macromol 71:155–162. https://doi.org/10.1016/j.ijbiomac.2014.04.050

    Article  CAS  PubMed  Google Scholar 

  24. Rosli NA, Ahmad I, Anuar FH, Abdullah I (2018) The contribution of eco-friendly bio-based blends on enhancing the thermal stability and biodegradability of poly(lactic acid). J Clean Prod 198:987–995. https://doi.org/10.1016/j.jclepro.2018.07.119

    Article  CAS  Google Scholar 

  25. Huang Y, Zhang C, Pan Y et al (2013) Effect of NR on the hydrolytic degradation of PLA. Polym Degrad Stab 98:943–950. https://doi.org/10.1016/j.polymdegradstab.2013.02.018

    Article  CAS  Google Scholar 

  26. Tertyshnaya Y, Podzorova M, Moskovskiy M (2021) Impact of water and UV irradiation on nonwoven polylactide/natural rubber fiber. Polymers 13:461. https://doi.org/10.3390/polym13030461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Buys YF, Aznan ANA, Anuar H (2018) Mechanical properties, morphology, and hydrolytic degradation behavior of polylactic acid/natural rubber blends. IOP Conf Ser Mater Sci Eng 290:012077. https://doi.org/10.1088/1757-899x/290/1/012077

    Article  CAS  Google Scholar 

  28. Hsissou R, Elharfi A (2020) Rheological behavior of three polymers and their hybrid composites (TGEEBA/MDA/PN), (HGEMDA/MDA/PN) and (NGHPBAE/MDA/PN). J King Saud Univ Sci 32(1):235–244. https://doi.org/10.1016/j.jksus.2018.04.030

    Article  Google Scholar 

  29. Hsissou R, Berradi M, El Bouchti M et al (2019) Synthesis characterization rheological and morphological study of a new epoxy resin pentaglycidyl ether pentaphenoxy of phosphorus and their composite (PGEPPP/MDA/PN). Polym Bull 76:4859–4878. https://doi.org/10.1007/s00289-018-2639-9

    Article  CAS  Google Scholar 

  30. Hsissou R, Dagdag O, Berradi M et al (2019) Investigation of structure and rheological behavior of a new epoxy polymer pentaglycidyl ether pentabisphenol A of phosphorus and of its composite with natural phosphate. SN Appl Sci 1:869. https://doi.org/10.1007/s42452-019-0911-8

    Article  CAS  Google Scholar 

  31. Keawkumay C, Jarukumjorn K, Wittayakun J et al (2012) Influences of surfactant content and type on physical properties of natural rubber/organoclay nanocomposites. J Polym Res 19:9917. https://doi.org/10.1007/s10965-012-9917-2

    Article  CAS  Google Scholar 

  32. Hsissou R, Bekhta A, Dagdag O et al (2020) Rheological properties of composite polymers and hybrid nanocomposites. Heliyon 6(6):e04187. https://doi.org/10.1016/j.heliyon.2020.e04187

    Article  PubMed  PubMed Central  Google Scholar 

  33. Hsissou R, Seghiri R, Benzekri Z et al (2021) Polymer composite materials: a comprehensive review. Compos Struct 262:113640. https://doi.org/10.1016/j.compstruct.2021.113640

    Article  CAS  Google Scholar 

  34. Akter M, Uddin MH, Tania IS (2022) Biocomposites based on natural fibers and polymers: a review on properties and potential applications. J Reinf Plast Compos 41(17–18):705–742. https://doi.org/10.1177/07316844211070609

    Article  CAS  Google Scholar 

  35. Rakmae S, Lorprayoon C, Ekgasit S, Suppakarn N (2013) Influence of heat-treated bovine bone-derived hydroxyapatite on physical properties and in vitro degradation behavior of poly (lactic acid) composites. Polym Plast Technol Eng 52:1043–1053. https://doi.org/10.1080/03602559.2013.769580

    Article  CAS  Google Scholar 

  36. Yu W, Dong L, Lei W et al (2021) Effects of rice straw powder (RSP) size and pretreatment on properties of FDM 3D-Printed RSP/Poly(Lactic acid) biocomposites. Molecules 27 26(11):3234. https://doi.org/10.3390/molecules26113234

    Article  CAS  Google Scholar 

  37. Srisuwan L, Jarukumjorn K, Suppakarn N (2018) Effect of silane treatment methods on physical properties of rice husk flour/natural rubber composites. Adv Mater Sci Eng 2018:1–14. https://doi.org/10.1155/2018/4583974

    Article  CAS  Google Scholar 

  38. Rakmae S, Ruksakulpiwat Y, Sutapun W, Suppakarn N (2011) Effects of mixing technique and filler content on physical properties of bovine bone-based CHA/PLA composites. J Appl Polym Sci 122:2433–2441. https://doi.org/10.1002/app.34422

    Article  CAS  Google Scholar 

  39. Chaiphut M, Ross S, Ross G, Suphrom N, Mahasaranon S (2021) Influence of the lemongrass powder and polybutylene succinate on the properties of biocomposite films based on poly (lactic acid). Mater Today 47:3537–3545. https://doi.org/10.1016/j.matpr.2021.03.544

    Article  CAS  Google Scholar 

  40. Suaduang N, Ross S, Ross GM, Wangsoub S, Mahasaranon S (2019) The physical and mechanical properties of biocomposite films composed of poly(lactic acid) with spent coffee grounds. Key Eng Mater 824:87–93. https://doi.org/10.4028/www.scientific.net/KEM.824.87

    Article  Google Scholar 

  41. Siakeng R, Jawaid M, Ariffin H et al (2019) Natural fiber reinforced polylactic acid composites: a review. Polym Compos 40:446–463. https://doi.org/10.1002/pc.24747

    Article  CAS  Google Scholar 

  42. Sakai E, Qiu JH, Murata T et al (2012) Degradation characteristics of rice straw/poly(lactic acid) composites. Adv Mat Res 391–392:1268–1272. https://doi.org/10.4028/www.scientific.net/AMR.391-392.1268

    Article  CAS  Google Scholar 

  43. Wu C-S, Liao H-T, Jhang J-J et al (2013) Thermal properties and characterization of surface-treated RSF-reinforced polylactide composites. Polym Bull 70:3221–3239. https://doi.org/10.1007/s00289-013-1018-9

    Article  CAS  Google Scholar 

  44. Xie H, Cui B, Hao S et al (2022) Exploring the macroscopic and microscopic characteristics of rice stalk for utilization in bio-composites. Compos Sci Technol 230:109728. https://doi.org/10.1016/j.compscitech.2022.109728

    Article  CAS  Google Scholar 

  45. Xu C, Sun C, Wan H et al (2022) Microstructure and physical properties of poly(lactic acid)/polycaprolactone/rice straw lightweight bio-composite foams for wall insulation. Constr Build Mater 354:129216. https://doi.org/10.1016/j.conbuildmat.2022.129216

    Article  CAS  Google Scholar 

  46. Yussuf AA, Massoumi I, Hassan A (2010) Comparison of polylactic acid/kenaf and polylactic acid/rise husk Composites: the influence of the natural fibers on the mechanical, thermal and biodegradability properties. J Polym Environ 18:422–429. https://doi.org/10.1007/s10924-010-0185-0

    Article  CAS  Google Scholar 

  47. Wu C-S (2018) Enhanced interfacial adhesion and characterisation of recycled natural fibre-filled biodegradable green composites. J Polym Environ 26:2676–2685. https://doi.org/10.1007/s10924-017-1160-9

    Article  CAS  Google Scholar 

  48. Xia T (2018) The characteristic changes of rice straw fibers in anaerobic digestion and its effect on rice straw-reinforced composites. Ind Crops Prod 121:73–79. https://doi.org/10.1016/j.indcrop.2018.04.004

    Article  CAS  Google Scholar 

  49. Goodman BA (2020) Utilization of waste straw and husks from rice production: a review. J Bioresour Bioprod 5:143–162. https://doi.org/10.1016/j.jobab.2020.07.001

    Article  CAS  Google Scholar 

  50. Cheewaphongphan P, Junpen A, Kamnoet O, Garivait S (2018) Study on the potential of rice straws as a supplementary fuel in very small power plants in Thailand. Energies 11:270. https://doi.org/10.3390/en11020270

    Article  Google Scholar 

  51. Yodkhum S, Sampattagul S, Gheewala SH (2018) Energy and environmental impact analysis of rice cultivation and straw management in northern Thailand. Environ Sci Pollut Res 25:17654–17664. https://doi.org/10.1007/s11356-018-1961-y

    Article  CAS  Google Scholar 

  52. Boonmee C, Kositanont C, Leejarkpai T (2016) Degradation of poly(lactic acid) under simulated landfill conditions. Environ Nat Resour J 14:1–9. https://doi.org/10.14456/ennrj.2016.8

    Article  Google Scholar 

  53. Krishnaswamy RK, Lamborn MJ (2000) Tensile properties of linear low density polyethylene (LLDPE) blown films. Polym Eng Sci 40:2385–2396. https://doi.org/10.1002/pen.11370

    Article  CAS  Google Scholar 

  54. Huang Y, Müller MT, Boldt R et al (2021) A new strategy to improve viscoelasticity, crystallization and mechanical properties of polylactide. Polym Test 97:107160. https://doi.org/10.1016/j.polymertesting.2021.107160

    Article  CAS  Google Scholar 

  55. Vananroye A, Cardinaels R, Van Puyvelde P, Moldenaers P (2008) Effect of confinement and viscosity ratio on the dynamics of single droplets during transient shear flow. J Rheol 52:1459–1475. https://doi.org/10.1122/1.2978956

    Article  CAS  Google Scholar 

  56. Hammani S, Moulai-Mostefa N, Samyn P et al (2020) Morphology, rheology and crystallization in relation to the viscosity ratio of polystyrene/polypropylene polymer blends. Materials 13:926. https://www.mdpi.com/1996-1944/13/4/926

  57. Alias NF, Ismail H, Ishak KMK (2021) Poly(lactic acid)/natural rubber/kenaf biocomposites production using poly(methyl methacrylate) and epoxidized natural rubber as co-compatibilizers. Iran Polym J 30:737–749. https://doi.org/10.1007/s13726-021-00927-8

    Article  CAS  Google Scholar 

  58. Kanakannavar S, Pitchaimani J, Thalla A, Rajesh M (2022) Biodegradation properties and thermogravimetric analysis of 3D braided flax PLA textile composites. J Ind Text 51:1066S-1091S. https://doi.org/10.1177/15280837211010666

    Article  CAS  Google Scholar 

  59. Rudnik E, Briassoulis D (2011) Degradation behaviour of poly(lactic acid) films and fibres in soil under Mediterranean field conditions and laboratory simulations testing. Ind Crops Prod 33:648–658. https://doi.org/10.1016/j.indcrop.2010.12.031

    Article  CAS  Google Scholar 

  60. Nissa R, Fikriyyah A, Abdullah A, Pudjiraharti S (2019) Preliminary study of biodegradability of starch-based bioplastics using ASTM G21–70, dip-hanging, and soil burial test methods. IOP Conf Ser Earth Environ Sci 277:012007. https://doi.org/10.1088/1755-1315/277/1/012007

    Article  Google Scholar 

  61. Liu M, Huang Z-B, Yang Y-J (2010) Analysis of biodegradability of three biodegradable mulching films. J Polym Environ 18:148–154. https://doi.org/10.1007/s10924-010-0162-7

    Article  CAS  Google Scholar 

  62. Speranza V, De Meo A, Pantani R (2014) Thermal and hydrolytic degradation kinetics of PLA in the molten state. Polym Degrad Stab 100:37–41. https://doi.org/10.1016/j.polymdegradstab.2013.12.031

    Article  CAS  Google Scholar 

  63. Juntuek P, Chumsamrong P, Ruksakulpiwat Y, Ruksakulpiwat C (2014) Effect of vetiver grass fiber on soil burial degradation of natural rubber and polylactic acid composites. Int Polym Process 29:379–388. https://doi.org/10.3139/217.2836

    Article  CAS  Google Scholar 

  64. Mazzanti V, Salzano de Luna M, Pariante R, Mollica F, Filippone G (2020) Natural fiber-induced degradation in PLA-hemp biocomposites in the molten state. Compos - A: Appl Sci Manuf 137:105990. https://doi.org/10.1016/j.compositesa.2020.105990

    Article  CAS  Google Scholar 

  65. Palai B, Mohanty S, Nayak SK (2021) A Comparison on Biodegradation behaviour of polylactic acid (PLA) based blown films by incorporating thermoplasticized starch (TPS) and poly (butylene succinate-co-adipate) (PBSA) biopolymer in soil. J Polym Environ 29:2772–2788. https://doi.org/10.1007/s10924-021-02055-z

    Article  CAS  Google Scholar 

  66. Yaacob N, Ismail H, Sam ST (2016) Soil burial of polylactic acid/paddy straw powder biocomposite. BioResources 11:1255–1269. https://doi.org/10.15376/biores.11.1.1255-1269

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge financial support from Suranaree University of Technology (SUT), Thailand Science Research and Innovation (TSRI), and National Science, Research and Innovation Fund (NSRF) (NRIIS number 160344).

Funding

This study was funded by Suranaree University of Technology (SUT), Thailand Science Research and Innovation (TSRI), and National Science, Research and Innovation Fund (NSRF) (NRIIS number 160344).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pranee Chumsamrong.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pongputthipat, W., Ruksakulpiwat, Y. & Chumsamrong, P. Development of biodegradable biocomposite films from poly(lactic acid), natural rubber and rice straw. Polym. Bull. 80, 10289–10307 (2023). https://doi.org/10.1007/s00289-022-04560-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-022-04560-0

Keywords

Navigation