Skip to main content
Log in

Polyamide (PA)- and Polyimide (PI)-based membranes for desalination application

  • Review Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

In recent years, water purification by membrane desalination techniques has been growing drastically; after all, water scarcity is a significant issue to deal with in some parts of the world. To put one step forward toward resolving the issue of water scarcity, the best way is to upgrade the current desalination technique and membranes so that the output of clear water will be improved. In this review, we will focus on enhancing some crucial properties of the Polyamide (PA) and Polyimide (PI) membranes by incorporating some functional additives. Ag NPs (Silver nanoparticles), Cu NPs (Copper nanoparticles), GO (Graphene oxide), SWCNT (Single-walled carbon nanotube), and MWCNT (multi-walled carbon nanotube) are some of the additives which can be used with PA/PI active layer to improve some essential properties of membrane-like antifouling, biofouling, low water flux, selectivity, permeability, hydrophilicity, hydrophobicity, etc. The deposition of such additives onto the surface of the Polyimide/Polyamide coat or membrane can be done using interfacial polymerization or phase inversion. Membrane filtration can be done using reverse osmosis and electrodialysis techniques. A thin-film composite membrane comprising PA and MWCNTs, yielded a water flux of almost 25.9 L m−2 h−1, with a salt rejection of 98.1% exhibiting excellent hydrophilicity with a water contact angle of 59.6°.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Availability of data and materials

All data generated or analyzed during this study are included in the submitted manuscript.

Code availability

Not applicable.

Abbreviations

aCN/AP:

Silver phosphate-loaded acidified graphitic carbon nitride

Ag:

Silver

Ag NPs:

Silver nanoparticles

AgNO3 :

Silver nitrate

CNT:

Carbon nanotube

Cu:

Copper

CuCl2·2H2O:

Dehydrated copper chloride

CuNPs:

Copper nanoparticles

DAPPC:

1,4-Bis(3-aminopropyl)-piperazine propane carboxylate

ED:

Electrodialysis

GO:

Graphene oxide

GO NPs:

Graphene oxide nanoparticles

GOQD:

Graphene oxide quantum dots

IP:

Interfacial polymerization

MED:

Multi-effect desalination

MOF:

Metal organic framework

MSF:

Multistage flash desalination

MTFN:

Multifunctional thin-film nanocomposite

MMM:

Mix matrix membrane

MPD:

M-phenylene diamine

MWCNT:

Muti-walled carbon nanotube

Na2SO3 :

Sodium sulfite

Na2SO4 :

Sodium sulfate

NaCl:

Sodium chloride

PA:

Polyamide

PAN:

Polyacrylonitrile

PEI:

Polyethyleneimine

PES:

Polyethersulfone

PI:

Polyimide

PIP:

Piperazine

PSF:

Polysulfone

PVDF:

Polyvinylidene fluoride

PVP:

Polyvinyl pyrrolidone

RO:

Reverse osmosis

SPI:

Sulfonated polyimide

SWCNT:

Single-walled carbon nanotube

T (\(^\circ{\rm C} )\) :

Temperature

TFC:

Thin-film nanocomposite

TiO2 :

Titanium dioxide

TMC:

Trimesoyl chloride

TNT:

Titania nanotubes

References

  1. Dixit F, Zimmermann K, Dutta R et al (2022) Application of MXenes for water treatment and energy-efficient desalination: a review. J Hazard Mater 423:127050. https://doi.org/10.1016/j.jhazmat.2021.127050

    Article  CAS  PubMed  Google Scholar 

  2. Kavitha VU, Kandasubramanian B (2020) Tannins for wastewater treatment. SN Appl Sci 2:1081. https://doi.org/10.1007/s42452-020-2879-9

    Article  CAS  Google Scholar 

  3. Wang D, Li J, Gao B et al (2021) Triple-layered thin film nanocomposite membrane toward enhanced forward osmosis performance. J Memb Sci 620:118879. https://doi.org/10.1016/j.memsci.2020.118879

    Article  CAS  Google Scholar 

  4. Gupta P, Lapalikar V, Kundu R, Balasubramanian K (2016) Recent Advances in membrane based waste water treatment technology: a review. Energy Environ Focus 5:241–267. https://doi.org/10.1166/eef.2016.1227

    Article  Google Scholar 

  5. Gude VG (2018) Energy storage for desalination. Renew Energy Powered Desalin Handb Appl Thermodyn. https://doi.org/10.1016/B978-0-12-815244-7.00010-6

    Article  Google Scholar 

  6. Rastogi S, Kandasubramanian B (2020) Application of electrospun materials in water treatment. In: Electrospun materials and their allied applications. Wiley, pp 151–183

  7. Turek M, Mitko K, Piotrowski K et al (2017) Prospects for high water recovery membrane desalination. Desalination 401:180–189. https://doi.org/10.1016/j.desal.2016.07.047

    Article  CAS  Google Scholar 

  8. Sunada K, Kikuchi Y, Hashimoto K, Fujishima A (1998) Bactericidal and detoxification effects of TiO2 thin film photocatalysts. Environ Sci Technol 32:726–728. https://doi.org/10.1021/es970860o

    Article  CAS  Google Scholar 

  9. Issac MN, Kandasubramanian B (2021) Effect of microplastics in water and aquatic systems. Environ Sci Pollut Res 28:19544–19562. https://doi.org/10.1007/s11356-021-13184-2

    Article  CAS  Google Scholar 

  10. Lee KP, Arnot TC, Mattia D (2011) A review of reverse osmosis membrane materials for desalination: development to date and future potential. J Memb Sci 370:1–22. https://doi.org/10.1016/j.memsci.2010.12.036

    Article  CAS  Google Scholar 

  11. Gore PM, Purushothaman A, Naebe M, et al (2019) Nanotechnology for oil-water separation, pp 299–339

  12. Pillai A, Kandasubramanian B (2020) Carbon xerogels for effluent treatment. J Chem Eng Data 65:2255–2270. https://doi.org/10.1021/acs.jced.0c00092

    Article  CAS  Google Scholar 

  13. Simon S, Balasubramanian K (2018) Facile immobilization of camphor soot on electrospun hydrophobic membrane for oil-water separation. Mater Focus 7:295–303. https://doi.org/10.1166/mat.2018.1511

    Article  CAS  Google Scholar 

  14. Mayilswamy N, Kandasubramanian B (2022) Green composites prepared from soy protein, polylactic acid (PLA), starch, cellulose, chitin: a review. Emergent Mater 5:727–753. https://doi.org/10.1007/s42247-022-00354-2

    Article  CAS  Google Scholar 

  15. Subash A, Naebe M, Wang X, Kandasubramanian B (2023) Biopolymer: a sustainable and efficacious material system for effluent removal. J Hazard Mater 443:130168. https://doi.org/10.1016/j.jhazmat.2022.130168

    Article  CAS  PubMed  Google Scholar 

  16. Mayilswamy N, Boney N, Kandasubramanian B (2022) Fabrication and molecular dynamics studies of layer-by-layer polyelectrolytic films. Eur Polym J 163:110945. https://doi.org/10.1016/j.eurpolymj.2021.110945

    Article  CAS  Google Scholar 

  17. Sharma S, Balasubramanian K (2015) Molecularly imprinted and nanoengineered camphor soot functionalized PAN-nanofibers for effluent treatment. RSC Adv 5:31732–31741. https://doi.org/10.1039/c5ra02861b

    Article  CAS  Google Scholar 

  18. Rule P, Balasubramanian K, Gonte RR (2014) Uranium(VI) remediation from aqueous environment using impregnated cellulose beads. J Environ Radioact 136:22–29. https://doi.org/10.1016/j.jenvrad.2014.05.004

    Article  CAS  PubMed  Google Scholar 

  19. Gore PM, Naebe M, Wang X, Kandasubramanian B (2020) Silk fibres exhibiting biodegradability and superhydrophobicity for recovery of petroleum oils from oily wastewater. J Hazard Mater 389:121823. https://doi.org/10.1016/j.jhazmat.2019.121823

    Article  CAS  PubMed  Google Scholar 

  20. Nitesh Singh NS, Balasubramanian K (2014) An effective technique for removal and recovery of uranium (VI) from aqueous solution using cellulose–camphor soot nanofibers. RSC Adv 4:27691–27701. https://doi.org/10.1039/C4RA01751J

    Article  CAS  Google Scholar 

  21. Mishra P, Balasubramanian K (2014) Nanostructured microporous polymer composite imprinted with superhydrophobic camphor soot, for emphatic oil–water separation. RSC Adv 4:53291–53296. https://doi.org/10.1039/C4RA07410F

    Article  CAS  Google Scholar 

  22. Gore P, Khraisheh M, Kandasubramanian B (2018) Nanofibers of resorcinol–formaldehyde for effective adsorption of As (III) ions from mimicked effluents. Environ Sci Pollut Res 25:11729–11745. https://doi.org/10.1007/s11356-018-1304-z

    Article  CAS  Google Scholar 

  23. Gonte RR, Shelar G, Balasubramanian K (2014) Polymer–agro-waste composites for removal of Congo red dye from wastewater: adsorption isotherms and kinetics. Desalin Water Treat 52:7797–7811. https://doi.org/10.1080/19443994.2013.833876

    Article  CAS  Google Scholar 

  24. Zaman NK, Rohani R, Mohammad AW, Isloor AM (2017) Polyimide-graphene oxide nanofiltration membrane: characterizations and application in enhanced high concentration salt removal. Chem Eng Sci. https://doi.org/10.1016/j.ces.2017.11.034

    Article  Google Scholar 

  25. Noy A, Park HG, Fornasiero F et al (2007) Nanofluidics in carbon nanotubes. Nano Today 2:22–29. https://doi.org/10.1016/S1748-0132(07)70170-6

    Article  Google Scholar 

  26. Okumus E, Gurkan T, Yilmaz L (1994) Development of a mixed-matrix membrane for pervaporation. Sep Sci Technol 29:2451–2473. https://doi.org/10.1080/01496399408002203

    Article  CAS  Google Scholar 

  27. Ismail AF, Goh PS, Sanip SM, Aziz M (2009) Transport and separation properties of carbon nanotube-mixed matrix membrane. Sep Purif Technol 70:12–26. https://doi.org/10.1016/j.seppur.2009.09.002

    Article  CAS  Google Scholar 

  28. Udayakumar KV, Gore PM, Kandasubramanian B (2021) Foamed materials for oil-water separation. Chem Eng J Adv 5:100076. https://doi.org/10.1016/j.ceja.2020.100076

    Article  CAS  Google Scholar 

  29. Deoray N, Kandasubramanian B (2018) Review on three-dimensionally emulated fiber-embedded lactic acid polymer composites: opportunities in engineering sector. Polym Plast Technol Eng 57:860–874. https://doi.org/10.1080/03602559.2017.1354226

    Article  CAS  Google Scholar 

  30. Patadiya J, Gawande A, Joshi G, Kandasubramanian B (2021) Additive manufacturing of shape memory polymer composites for futuristic technology. Ind Eng Chem Res 60:15885–15912. https://doi.org/10.1021/acs.iecr.1c03083

    Article  CAS  Google Scholar 

  31. Khatavkar N, Balasubramanian K (2016) Composite materials for supersonic aircraft radomes with ameliorated radio frequency transmission-a review. RSC Adv 6:6709–6718. https://doi.org/10.1039/C5RA18712E

    Article  CAS  Google Scholar 

  32. Wan C, Zhao F, Bao X et al (2008) Surface characteristics of polyhedral oligomeric silsesquioxane modified clay and its application in polymerization of macrocyclic polyester oligomers. J Phys Chem B 112:11915–11922. https://doi.org/10.1021/jp805259q

    Article  CAS  PubMed  Google Scholar 

  33. Sahoo BN, Kandasubramanian B (2014) An experimental design for the investigation of water repellent property of candle soot particles. Mater Chem Phys 148:134–142. https://doi.org/10.1016/j.matchemphys.2014.07.022

    Article  CAS  Google Scholar 

  34. Mayilswamy N, Jaya Prakash N, Kandasubramanian B (2022) Design and fabrication of biodegradable electrospun nanofibers loaded with biocidal agents. Int J Polym Mater Polym Biomater. https://doi.org/10.1080/00914037.2021.2021905

    Article  Google Scholar 

  35. Cadotte JE, Petersen RJ, Larson RE, Erickson EE (1980) A new thin-film composite seawater reverse osmosis membrane. Desalination 32:25–31. https://doi.org/10.1016/S0011-9164(00)86003-8

    Article  Google Scholar 

  36. Cadotte JE (1985) Evolution of composite reverse osmosis membranes, pp 273–294

  37. Freger V, Ramon GZ (2021) Polyamide desalination membranes: Formation, structure, and properties. Prog Polym Sci 122:101451. https://doi.org/10.1016/j.progpolymsci.2021.101451

    Article  CAS  Google Scholar 

  38. Petersen RJ (1993) Composite reverse osmosis and nanofiltration membranes. J Memb Sci 83:81–150. https://doi.org/10.1016/0376-7388(93)80014-O

    Article  CAS  Google Scholar 

  39. Morgan PW (2011) Interfacial polymerization. In: Encyclopedia of polymer science and technology. Wiley, Hoboken

  40. Raaijmakers MJT, Benes NE (2016) Current trends in interfacial polymerization chemistry. Prog Polym Sci 63:86–142. https://doi.org/10.1016/j.progpolymsci.2016.06.004

    Article  CAS  Google Scholar 

  41. Feldman D (2017) Polyamide nanocomposites. J Macromol Sci Part A 54:255–262. https://doi.org/10.1080/10601325.2017.1282700

    Article  CAS  Google Scholar 

  42. Ben-Sasson M, Zodrow KR, Genggeng Q et al (2014) Surface functionalization of thin-film composite membranes with copper nanoparticles for antimicrobial surface properties. Environ Sci Technol 48:384–393. https://doi.org/10.1021/es404232s

    Article  CAS  PubMed  Google Scholar 

  43. Yu L, Zhou W, Li Y et al (2019) Antibacterial thin-film nanocomposite membranes incorporated with graphene oxide quantum dot-mediated silver nanoparticles for reverse osmosis application. ACS Sustain Chem Eng 7:8724–8734. https://doi.org/10.1021/acssuschemeng.9b00598

    Article  CAS  Google Scholar 

  44. He M, Fan X, Yang Z et al (2016) Antifouling high-flux membranes via surface segregation and phase separation controlled by the synergy of hydrophobic and hydrogen bond interactions. J Memb Sci 520:814–822. https://doi.org/10.1016/j.memsci.2016.08.044

    Article  CAS  Google Scholar 

  45. Yip NY, Tiraferri A, Phillip WA et al (2010) High performance thin-film composite forward osmosis membrane. Environ Sci Technol 44:3812–3818. https://doi.org/10.1021/es1002555

    Article  CAS  PubMed  Google Scholar 

  46. Qiu M, He C (2018) Novel zwitterion-silver nanocomposite modified thin-film composite forward osmosis membrane with simultaneous improved water flux and biofouling resistance property. Appl Surf Sci 455:492–501. https://doi.org/10.1016/j.apsusc.2018.06.020

    Article  CAS  Google Scholar 

  47. Ma X-H, Yang Z, Yao Z-K et al (2017) A facile preparation of novel positively charged MOF/chitosan nanofiltration membranes. J Memb Sci 525:269–276. https://doi.org/10.1016/j.memsci.2016.11.015

    Article  CAS  Google Scholar 

  48. Ben-Sasson M, Lu X, Bar-Zeev E et al (2014) In situ formation of silver nanoparticles on thin-film composite reverse osmosis membranes for biofouling mitigation. Water Res 62:260–270. https://doi.org/10.1016/j.watres.2014.05.049

    Article  CAS  PubMed  Google Scholar 

  49. Sharma L, Ye L, Yong C et al (2022) Aquaporin-based membranes made by interfacial polymerization in hollow fibers: visualization and role of aquaporin in water permeability. J Memb Sci 654:120551. https://doi.org/10.1016/j.memsci.2022.120551

    Article  CAS  Google Scholar 

  50. Yang Z, Guo H, Yao Z et al (2019) Hydrophilic silver nanoparticles induce selective nanochannels in thin film nanocomposite polyamide membranes. Environ Sci Technol 53:5301–5308. https://doi.org/10.1021/acs.est.9b00473

    Article  CAS  PubMed  Google Scholar 

  51. Dong G, Hou J, Wang J et al (2016) Enhanced CO2/N2 separation by porous reduced graphene oxide/Pebax mixed matrix membranes. J Memb Sci 520:860–868. https://doi.org/10.1016/j.memsci.2016.08.059

    Article  CAS  Google Scholar 

  52. Abadikhah H, Kalali EN, Behzadi S et al (2018) Amino functionalized silica nanoparticles incorporated thin film nanocomposite membrane with suppressed aggregation and high desalination performance. Polymer (Guildf) 154:200–209. https://doi.org/10.1016/j.polymer.2018.09.007

    Article  CAS  Google Scholar 

  53. Abadikhah H, Naderi Kalali E, Khodi S et al (2019) Multifunctional thin-film nanofiltration membrane incorporated with reduced graphene oxide@TiO2@Ag nanocomposites for high desalination performance, dye retention, and antibacterial properties. ACS Appl Mater Interfaces 11:23535–23545. https://doi.org/10.1021/acsami.9b03557

    Article  CAS  PubMed  Google Scholar 

  54. Gonte RR, Deb PC, Balasubramanian K (2013) Hydrogen sorption onto hypercrosslinked polymer decorated with metal-organic framework. J Polym 2013:1–8. https://doi.org/10.1155/2013/684584

    Article  CAS  Google Scholar 

  55. Zirehpour A, Rahimpour A, Ulbricht M (2017) Nano-sized metal organic framework to improve the structural properties and desalination performance of thin film composite forward osmosis membrane. J Memb Sci 531:59–67. https://doi.org/10.1016/j.memsci.2017.02.049

    Article  CAS  Google Scholar 

  56. Wang Z, Wang Z, Lin S et al (2018) Nanoparticle-templated nanofiltration membranes for ultrahigh performance desalination. Nat Commun 9:2004. https://doi.org/10.1038/s41467-018-04467-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Zhu Y, Xie W, Gao S et al (2016) Single-walled carbon nanotube film supported nanofiltration membrane with a nearly 10 nm thick polyamide selective layer for high-flux and high-rejection desalination. Small 12:5034–5041. https://doi.org/10.1002/smll.201601253

    Article  CAS  PubMed  Google Scholar 

  58. Chen X, Dai Y, Wang X et al (2015) Synthesis and characterization of Ag3PO4 immobilized with graphene oxide (GO) for enhanced photocatalytic activity and stability over 2,4-dichlorophenol under visible light irradiation. J Hazard Mater 292:9–18. https://doi.org/10.1016/j.jhazmat.2015.01.032

    Article  CAS  PubMed  Google Scholar 

  59. Yang X, Cai H, Bao M et al (2018) Insight into the highly efficient degradation of PAHs in water over graphene oxide/Ag3PO4 composites under visible light irradiation. Chem Eng J 334:355–376. https://doi.org/10.1016/j.cej.2017.09.104

    Article  CAS  Google Scholar 

  60. Li S, Gao B, Wang Y et al (2019) Antibacterial thin film nanocomposite reverse osmosis membrane by doping silver phosphate loaded graphene oxide quantum dots in polyamide layer. Desalination 464:94–104. https://doi.org/10.1016/j.desal.2019.04.029

    Article  CAS  Google Scholar 

  61. Ambekar RS, Kandasubramanian B (2020) Antimicrobial electrospun materials. In: Electrospun materials and their allied applications. Wiley, pp 483–514

  62. Hirsch UM, Teuscher N, Rühl M, Heilmann A (2019) Plasma-enhanced magnetron sputtering of silver nanoparticles on reverse osmosis membranes for improved antifouling properties. Surf Interfaces 16:1–7. https://doi.org/10.1016/j.surfin.2019.04.003

    Article  CAS  Google Scholar 

  63. Bagchi B, Dey S, Bhandary S et al (2012) Antimicrobial efficacy and biocompatibility study of copper nanoparticle adsorbed mullite aggregates. Mater Sci Eng C 32:1897–1905. https://doi.org/10.1016/j.msec.2012.05.011

    Article  CAS  Google Scholar 

  64. Ren G, Hu D, Cheng EWC et al (2009) Characterisation of copper oxide nanoparticles for antimicrobial applications. Int J Antimicrob Agents 33:587–590. https://doi.org/10.1016/j.ijantimicag.2008.12.004

    Article  CAS  PubMed  Google Scholar 

  65. García A, Quintero Y, Vicencio N et al (2016) Influence of TiO 2 nanostructures on anti-adhesion and photoinduced bactericidal properties of thin film composite membranes. RSC Adv 6:82941–82948. https://doi.org/10.1039/C6RA17999A

    Article  CAS  Google Scholar 

  66. García A, Rodríguez B, Oztürk D et al (2018) Incorporation of CuO nanoparticles into thin-film composite reverse osmosis membranes (TFC-RO) for antibiofouling properties. Polym Bull 75:2053–2069. https://doi.org/10.1007/s00289-017-2146-4

    Article  CAS  Google Scholar 

  67. Zhang L, Wang H, Yu W et al (2012) Facile and large-scale synthesis of functional poly(m-phenylenediamine) nanoparticles by Cu2+-assisted method with superior ability for dye adsorption. J Mater Chem 22:18244. https://doi.org/10.1039/c2jm32859c

    Article  CAS  Google Scholar 

  68. Balasubramanian K, Yadav R, Prajith P (2015) Antibacterial nanofibers of polyoxymethylene/gold for pro-hygiene applications. Int J Plast Technol 19:363–367. https://doi.org/10.1007/s12588-015-9127-y

    Article  CAS  Google Scholar 

  69. Rodríguez B, Oztürk D, Rosales M et al (2018) Antibiofouling thin-film composite membranes (TFC) by in situ formation of Cu-(m-phenylenediamine) oligomer complex. J Mater Sci 53:6325–6338. https://doi.org/10.1007/s10853-018-2039-4

    Article  CAS  Google Scholar 

  70. Ali MEA, Hassan FM, Feng X (2016) Improving the performance of TFC membranes via chelation and surface reaction: applications in water desalination. J Mater Chem A 4:6620–6629. https://doi.org/10.1039/C6TA01460G

    Article  CAS  Google Scholar 

  71. Ramdayal BK (2014) Antibacterial application of polyvinylalcohol-nanogold composite membranes. Colloids Surf A Physicochem Eng Asp 455:174–178. https://doi.org/10.1016/j.colsurfa.2014.04.050

    Article  CAS  Google Scholar 

  72. Issac MN, Kandasubramanian B (2020) Review of manufacturing three-dimensional-printed membranes for water treatment. Environ Sci Pollut Res 27:36091–36108. https://doi.org/10.1007/s11356-020-09452-2

    Article  CAS  Google Scholar 

  73. Ma N, Wei J, Liao R, Tang CY (2012) Zeolite-polyamide thin film nanocomposite membranes: towards enhanced performance for forward osmosis. J Memb Sci 405–406:149–157. https://doi.org/10.1016/j.memsci.2012.03.002

    Article  CAS  Google Scholar 

  74. Hu M, Mi B (2013) Enabling graphene oxide nanosheets as water separation membranes. Environ Sci Technol 47:3715–3723. https://doi.org/10.1021/es400571g

    Article  CAS  PubMed  Google Scholar 

  75. Eslah SS, Shokrollahzadeh S, Jazani OM (2017) Forward osmosis water desalination : Fabrication of graphene oxide-polyamide/polysulfone thin-film nanocomposite membrane with high water flux and low reverse salt diffusion. Sep Sci Technol. https://doi.org/10.1080/01496395.2017.1398261

    Article  Google Scholar 

  76. Purabgola A, Mayilswamy N, Kandasubramanian B (2022) Graphene-based TiO2 composites for photocatalysis & environmental remediation: synthesis and progress. Environ Sci Pollut Res 29:32305–32325. https://doi.org/10.1007/s11356-022-18983-9

    Article  CAS  Google Scholar 

  77. Zhao X, Tong Z, Liu X, et al (2020) Facile preparation of polyamide-graphene oxide composite membranes for upgrading pervaporation desalination performances of hypersaline solutions. https://doi.org/10.1021/acs.iecr.0c01417

  78. Thakur K, Kandasubramanian B (2019) Graphene and graphene oxide-based composites for removal of organic pollutants: a review. J Chem Eng Data 64:833–867. https://doi.org/10.1021/acs.jced.8b01057

    Article  CAS  Google Scholar 

  79. Kim I-C, Jeong B-R, Kim S-J, Lee K-H (2013) Preparation of high flux thin film composite polyamide membrane: the effect of alkyl phosphate additives during interfacial polymerization. Desalination 308:111–114. https://doi.org/10.1016/j.desal.2012.08.001

    Article  CAS  Google Scholar 

  80. Bano S, Mahmood A, Kim S, Lee K (2014) membrane with improved fl ux and antifouling properties. https://doi.org/10.1039/C4TA03607G

  81. Dong Y, Chen C, Zheng X et al (2012) One-step and high yield simultaneous preparation of single- and multi-layer graphene quantum dots from CX-72 carbon black. J Mater Chem 22:8764. https://doi.org/10.1039/c2jm30658a

    Article  CAS  Google Scholar 

  82. Seyedpour SF, Rahimpour A, Shamsabadi AA, Soroush M (2018) Graphical abstract. Chem Eng Res Des. https://doi.org/10.1016/j.cherd.2018.09.041

    Article  Google Scholar 

  83. Pang R, Zhang K (2017) RSC Advances A facile and viable approach to fabricate polyamide membranes functionalized with graphene oxide. RSC Adv 7:53463–53471. https://doi.org/10.1039/C7RA11358G

    Article  CAS  Google Scholar 

  84. Shi J, Wu W, Xia Y et al (2018) Con fi ned interfacial polymerization of polyamide-graphene oxide composite membranes for water desalination Pure water MPD solution. Desalination 441:77–86. https://doi.org/10.1016/j.desal.2018.04.030

    Article  CAS  Google Scholar 

  85. Inurria A, Cay-durgun P, Rice D et al (2018) Polyamide thin- fi lm nanocomposite membranes with graphene oxide nanosheets: balancing membrane performance and fouling propensity. Desalination. https://doi.org/10.1016/j.desal.2018.07.004

    Article  Google Scholar 

  86. Abbaszadeh M, Krizak D, Kundu S (2019) Layer-by-layer assembly of graphene oxide nanoplatelets embedded desalination membranes with improved chlorine resistance. Desalination 470:114116. https://doi.org/10.1016/j.desal.2019.114116

    Article  CAS  Google Scholar 

  87. Yi Z, Shao F, Yu L et al (2020) Chemical grafting N-GOQD of polyamide reverse osmosis membrane with improved chlorine resistance, water fl ux and NaCl rejection. Desalination 479:114341. https://doi.org/10.1016/j.desal.2020.114341

    Article  CAS  Google Scholar 

  88. Sahoo BN, Balasubramanian K (2015) A nanocellular PVDF–graphite water-repellent composite coating. RSC Adv 5:6743–6751. https://doi.org/10.1039/C4RA06704E

    Article  CAS  Google Scholar 

  89. Sun H, Li D, Liu B, Yao J (2019) Enhancing the permeability of TFC membranes based on incorporating polyamide matrix into MWCNTs framework. Appl Surf Sci 496:143680. https://doi.org/10.1016/j.apsusc.2019.143680

    Article  CAS  Google Scholar 

  90. Taylor P, Park J, Choi W, et al. Desalination and water treatment enhancement of chlorine resistance in carbon nanotube based nanocomposite reverse osmosis membranes enhancement of chlorine resistance in carbon nanotube-based nanocomposite reverse osmosis membranes. 37–41. https://doi.org/10.5004/dwt.2010.1686

  91. Azelee IW, Goh PS, Lau WJ et al (2017) Enhanced desalination of polyamide thin fi lm nanocomposite incorporated with acid treated multiwalled carbon nanotube-titania nanotube hybrid. Desalination 409:163–170. https://doi.org/10.1016/j.desal.2017.01.029

    Article  CAS  Google Scholar 

  92. Farahbaksh J, Delnavaz M, Vatanpour V (2017) Investigation of raw and oxidized multiwalled carbon nanotubes in fabrication of reverse osmosis polyamide membranes for improvement in desalination and antifouling properties. Desalination 410:1–9. https://doi.org/10.1016/j.desal.2017.01.031

    Article  CAS  Google Scholar 

  93. Park J, Choi W, Kim SH et al (2010) Enhancement of chlorine resistance in carbon nanotube based nanocomposite reverse osmosis membranes. Desalin Water Treat 15:198–204. https://doi.org/10.5004/dwt.2010.1686

    Article  CAS  Google Scholar 

  94. Mahdavi MR, Delnavaz M, Vatanpour V (2017) Fabrication and water desalination performance of piperazine–polyamide nanocomposite nanofiltration membranes embedded with raw and oxidized MWCNTs. J Taiwan Inst Chem Eng 75:189–198. https://doi.org/10.1016/j.jtice.2017.03.039

    Article  CAS  Google Scholar 

  95. Rashed AO, Esawi AMK, Ramadan AR (2020) Novel polysulfone/carbon nanotube-polyamide thin film nanocomposite membranes with improved water flux for forward osmosis desalination. ACS Omega 5:14427–14436. https://doi.org/10.1021/acsomega.0c00973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Zhao M, Zhang HF, Huang H, Zhang YS (2017) Preparation and properties of nanocomposite MWCNTs/polyamide reverse osmosis membrane for desalination by interfacial polymerization. Key Eng Mater 727:1016–1025. https://doi.org/10.4028/www.scientific.net/KEM.727.1016

    Article  Google Scholar 

  97. Hummers WS, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80:1339–1339. https://doi.org/10.1021/ja01539a017

    Article  CAS  Google Scholar 

  98. Huang A, Feng B (2018) Synthesis of novel graphene oxide-polyimide hollow fi ber membranes for seawater desalination. J Memb Sci 548:59–65. https://doi.org/10.1016/j.memsci.2017.11.016

    Article  CAS  Google Scholar 

  99. Ba C, Langer J, Economy J (2009) Chemical modification of P84 copolyimide membranes by polyethylenimine for nanofiltration. 327:49–58. https://doi.org/10.1016/j.memsci.2008.10.051

  100. Pandey RP, Shahi VK (2014) A N-o-sulphonic acid benzyl chitosan (NSBC) and N,N-dimethylene phosphonic acid propylsilane graphene oxide (NMPSGO) based multi-functional polymer electrolyte membrane with enhanced water retention and conductivity. RSC Adv 4:57200–57209. https://doi.org/10.1039/C4RA09581B

    Article  CAS  Google Scholar 

  101. Tripathi BP, Chakrabarty T, Shahi VK (2010) Highly charged and stable cross-linked 4,4′-bis(4-aminophenoxy)biphenyl-3,3′-disulfonic acid (BAPBDS)-sulfonated poly(ether sulfone) polymer electrolyte membranes impervious to methanol. J Mater Chem 20:8036. https://doi.org/10.1039/c0jm01183e

    Article  CAS  Google Scholar 

  102. Shukla G, Pandey RP, Shahi VK (2016) Author’s accepted manuscript improved performance. Elsevier

  103. Wang S, Yi Z, Zhao X et al (2017) Aggregation suppressed thin film nanocomposite (TFN) membranes prepared with an in situ generation of TiO 2 nanoadditives. RSC Adv 7:26136–26144. https://doi.org/10.1039/C7RA02374J

    Article  CAS  Google Scholar 

  104. Jeong B-H, Hoek EMV, Yan Y et al (2007) Interfacial polymerization of thin film nanocomposites: a new concept for reverse osmosis membranes. J Memb Sci 294:1–7. https://doi.org/10.1016/j.memsci.2007.02.025

    Article  CAS  Google Scholar 

  105. Lee HS, Im SJ, Kim JH et al (2008) Polyamide thin-film nanofiltration membranes containing TiO2 nanoparticles. Desalination 219:48–56. https://doi.org/10.1016/j.desal.2007.06.003

    Article  CAS  Google Scholar 

  106. Yang C, Xu W, Nan Y, Wang Y (2020) Novel solvent-resistant nanofiltration membranes using MPD co-crosslinked polyimide for efficient desalination. J Memb Sci 616:118603. https://doi.org/10.1016/j.memsci.2020.118603

    Article  CAS  Google Scholar 

  107. Feng B, Xu K, Huang A (2016) RSC advances matrix membranes for desalination. RSC Adv 7:2211–2217. https://doi.org/10.1039/C6RA24974D

    Article  Google Scholar 

  108. Hamdy G, Taher A (2020) Enhanced chlorine-resistant and low biofouling reverse osmosis polyimide-graphene oxide thin film nanocomposite membranes for water desalination. Polym Eng Sci 60:2567–2580. https://doi.org/10.1002/pen.25495

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author would like to acknowledge Dr. S. P. Bhosle, Principal & Head, Maharashtra Institute of Technology, Aurangabad, Dr. Aniruddha Chatterjee, Head of Department, Plastic and polymer engineering, Maharashtra Institute of Technology, Aurangabad and Mrs. Suranjana Mandal, Associate Professor, Maharashtra Institute of Technology, Aurangabad and Dr. CP Ramanarayanan, Vice Chancellor of DIAT (DU), Pune, for their continuous encouragement and support. Authors wish to extend special thanks to Dr. Amrita Nighojkar, Miss. Niranjana Jaya Prakash, Mr. Jigar Patadiya, and Miss. Alsha Subash for their unwavering and continuous technical support throughout the review writing. The authors are thankful to the editors and anonymous reviewers who has helped in enhancing the quality of the manuscript.

Funding

The authors did not receive support from any organization for the submitted work.

Author information

Authors and Affiliations

Authors

Contributions

Y A Ghodke contributed in Material preparation, data collection analysis and writing of the article. N Mayilswamy contributed to material preparation and writing of the article. B Kandasubramanian made substantial contribution to conceptualization, discussion and reviewed the manuscript before submission.

Corresponding author

Correspondence to Balasubramanian Kandasubramanian.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Consent to participate

Not applicable.

Consent for publication

The authors consent to publish the article on acceptance.

Ethics approval

The submitted article complies with the ethical guidelines of the journal and does not contain the results of studies involving humans and/or animals.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghodke, Y.A., Mayilswamy, N. & Kandasubramanian, B. Polyamide (PA)- and Polyimide (PI)-based membranes for desalination application. Polym. Bull. 80, 10661–10695 (2023). https://doi.org/10.1007/s00289-022-04559-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-022-04559-7

Keywords

Navigation