Skip to main content
Log in

Fabrication of chitosan-based interpenetrating network hydrogel via sequential amino-maleimide click reaction and photopolymerization in water

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Herein, chitosan-based interpenetrating network (IPN) hydrogel was prepared in one pot via amino-maleimide click reaction and photopolymerization. First, polyethylene glycol (PEG) was modified with maleimide propionic acid (MI) to obtain functionalized polyethylene glycol (PEG-MI). Second, a transparent aqueous solution of PEG-MI, chitosan, 2-acrylamide-2-methylpropanesulfonic acid, acrylamide, poly (ethylene glycol) dimethacrylate, and photoinitiator was prepared. The first network was formed through the click reaction of the maleimide group in PEG-MI with the amino group in chitosan at 60 °C. Then, the second network was obtained via photopolymerization, so the hydrogel with two interpenetrating networks was fabricated. Single-factor experiments were used to optimize the preparation conditions of IPN hydrogels with swelling ratio as an index. It was found that the swelling behavior was influenced by the crosslinker content, the mass ratio of two networks, the molar ratio of amino to maleimide, and dye concentration. Finally, the application of the hydrogel in water treatment was explored under different pH values, initial concentrations, contact time, and ionic strength. Adsorption kinetics models, adsorption isotherm models, and adsorption thermodynamic were applied to study the adsorption mechanism. The results show that the product has good adsorption behavior for methylene blue (MB), and its maximum adsorption capacity to MB is 956 mg/g. The “one-pot” preparation strategy of IPN hydrogels, with a simple operation process and short reaction time, has broad application prospects in water treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig.1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Ferfera-Harrar H, Benhalima T, Sadi A (2021) Development of functional chitosan-based superabsorbent hydrogel nanocomposites for adsorptive removal of basic red 46 textile dye. Polym Bull 79:6141–6172. https://doi.org/10.1007/s00289-021-03795-7

    Article  CAS  Google Scholar 

  2. Hasani S, Mohamadnia Z, Kazemi F (2021) Preparation of microbeads grafted with poly(2-(acryloyloxy)ethyl]trimethylammonium chloride) cationic polyelectrolyte as recyclable and effective adsorbents for organic dyes. React Funct Polym 169:105087. https://doi.org/10.1016/j.reactfunctpolym.2021.105087

    Article  CAS  Google Scholar 

  3. Huang L, Jin S, Bao F, Tang S, Yang J, Peng K, Chen Y (2022) Construction of a physically cross-linked carrageenan/chitosan/calcium ion double-network hydrogel for 3-Nitro-1, 2, 4-triazole-5-one removal. J Hazard Mater 424:127510. https://doi.org/10.1016/j.jhazmat.2021.127510

    Article  CAS  PubMed  Google Scholar 

  4. Yang J, Chen X, Zhang J, Wang Y, Wen H, Xie J (2021) Role of chitosan-based hydrogels in pollutants adsorption and freshwater harvesting: a critical review. Int J Biol Macromol 189:53–64. https://doi.org/10.1016/j.ijbiomac.2021.08.047

    Article  CAS  PubMed  Google Scholar 

  5. García-Astrain C, Guaresti O, González K, Santamaria-Echart A, Eceiza A, Corcuera MA, Gabilondo N (2016) Click gelatin hydrogels: characterization and drug release behaviour. Mater Lett 182:134–137. https://doi.org/10.1016/j.matlet.2016.06.115

    Article  CAS  Google Scholar 

  6. Guaresti O, Garcia-Astrain C, Aguirresarobe RH, EceizaA GN (2018) Synthesis of stimuli-responsive chitosan-based hydrogels by diels-alder cross-linking `click reaction as potential carriers for drug administration. Carbohydr Polym 183:278–286. https://doi.org/10.1016/j.carbpol.2017.12.034

    Article  CAS  PubMed  Google Scholar 

  7. Li S, Zhou D, Pei M, Zhou Y, Xu W, Xiao P (2020) Fast gelling and non-swellable photopolymerized poly (vinyl alcohol) hydrogels with high strength. Eur Polym J 134:109854. https://doi.org/10.1016/j.eurpolymj.2020.109854

    Article  CAS  Google Scholar 

  8. Han J, Wang K, Yang D, Nie J (2009) Photopolymerization of methacrylated chitosan/PNIPAAm hybrid dual-sensitive hydrogels as carrier for drug delivery. Int J Biol Macromol 44(3):229–235. https://doi.org/10.1016/j.ijbiomac.2008.12.009

    Article  CAS  PubMed  Google Scholar 

  9. Pedige MPH, Asoh TA, Hsu YI, Uyama H (2022) Stimuli-responsive composite hydrogels with three-dimensional stability prepared using oxidized cellulose nanofibers and chitosan. Carbohydr Polym 278:118907. https://doi.org/10.1016/j.carbpol.2021.118907

    Article  CAS  PubMed  Google Scholar 

  10. Sun A, He X, Ji X, Hu D, Pan M, Zhang L, Qian ZY (2021) Current research progress of photopolymerized hydrogels in tissue engineering. China Chem Lett 32(7):2117–2126. https://doi.org/10.1016/j.cclet.2021.01.048

    Article  CAS  Google Scholar 

  11. Yu L, Zhang Z, You YZ, Hong CY (2018) Synthesis of sequence-controlled polymers via sequential thiol-ene and amino-yne click reactions in one pot. Eur Polym J 103:80–87. https://doi.org/10.1016/j.eurpolymj.2018.02.006

    Article  CAS  Google Scholar 

  12. Gonzalez de Torre I, Santos M, Quintanilla L, Testera A, Alonso M, Rodriguez Cabello JC (2014) Elastin-like recombinamer catalyst-free click gels: characterization of poroelastic and intrinsic viscoelastic properties. Acta Biomater 10(6):2495–2505. https://doi.org/10.1016/j.actbio.2014.02.006

    Article  CAS  PubMed  Google Scholar 

  13. Sitterli A, Heinze T (2019) Studies about reactive ene-functionalized dextran derivatives for thiol-ene click reactions. React Funct Polym 136:66–74. https://doi.org/10.1016/j.reactfunctpolym.2018.12.014

    Article  CAS  Google Scholar 

  14. Meng X, Edgar KJ (2016) “Click” reactions in polysaccharide modification. Prog Polym Sci 53:52–85. https://doi.org/10.1016/j.progpolymsci.2015.07.006

    Article  CAS  Google Scholar 

  15. Qian Y, Dong F, Guo L, Xu X, Liu H (2021) Two-component waterborne polyurethane modified with terpene derivative-based polysiloxane for coatings via a thiol-ene click reaction. Ind Crop Prod 171:113903. https://doi.org/10.1016/j.indcrop.2021.113903

    Article  CAS  Google Scholar 

  16. Garcia-Astrain C, Averous L (2018) Synthesis and evaluation of functional alginate hydrogels based on click chemistry for drug delivery applications. Carbohydr Polym 190:271–280. https://doi.org/10.1016/j.carbpol.2018.02.086

    Article  CAS  PubMed  Google Scholar 

  17. Bai X, Lu S, Cao Z, Ni B, Wang X, Ning P, Ma DY, Wei H, Liu MZ (2017) Dual crosslinked chondroitin sulfate injectable hydrogel formed via continuous diels-alder (DA) click chemistry for bone repair. Carbohydr Polym 166:123–130. https://doi.org/10.1016/j.carbpol.2017.02.062

    Article  CAS  PubMed  Google Scholar 

  18. Wang X, Li Z, Shi T, ZhaoP AK, Lin C, Liu H (2017) Injectable dextran hydrogels fabricated by metal-free click chemistry for cartilage tissue engineering. Mater Sci Eng C Mater Biol Appl 73:21–30. https://doi.org/10.1016/j.msec.2016.12.053

    Article  CAS  PubMed  Google Scholar 

  19. Wei H, Li W, Chen H, WenX HJ, Li J (2020) Simultaneous diels-alder click reaction and starch hydrogel microsphere production via spray drying. Carbohydr Polym 241:116351. https://doi.org/10.1016/j.carbpol.2020.116351

    Article  CAS  PubMed  Google Scholar 

  20. Zhu H, Chu H, Wei H, Zhu J, Wang G (2016) Click synthesis of hydrogels by metal-free 1,3-dipolar cycloaddition reaction between maleimide and azide functionalized polymers. Macromol Res 24:793–799. https://doi.org/10.1007/s13233-016-4120-7

    Article  CAS  Google Scholar 

  21. Lungu A, Ghitman J, Cernencu AI, Serafim A, Florea NM, Vasile E, Iovu H (2018) POSS-containing hybrid nanomaterials based on thiol-epoxy click reaction. Polymer 145:324–333. https://doi.org/10.1016/j.polymer.2018.05.015

    Article  CAS  Google Scholar 

  22. Oktay B, Demir S, Kayaman-Apohan N (2020) Immobilization of pectinase on polyethyleneimine based support via spontaneous amino-yne click reaction. Food Bioprod Process 122:159–168. https://doi.org/10.1016/j.fbp.2020.04.010

    Article  CAS  Google Scholar 

  23. Russo L, Sgambato A, Visone R, Occhetta P, Moretti M, Rasponi M, Nicotra F, Cipolla L (2015) Gelatin hydrogels via thiol-ene chemistry. Monatsh Chem 147:587–592. https://doi.org/10.1007/s00706-015-1614-5

    Article  CAS  Google Scholar 

  24. Lu Y, Wang Y, Chen S, Zhang J, Cheng J, Miao M, Zhang D (2020) Preparation of epoxy resins with excellent comprehensive performance by thiol-epoxy click reaction. Prog Org Coat 139:105436. https://doi.org/10.1016/j.porgcoat.2019.105436

    Article  CAS  Google Scholar 

  25. Yue Y, Liang Y, Wang H, Feng L, Feng S, Lu H (2013) Photophysical properties of sol-gel derived luminescent silicone hybrids synthesized via facile amino-ene reaction. Photochem Photobiol 89:5–13. https://doi.org/10.1111/j.1751-1097.2012.01199.x

    Article  CAS  PubMed  Google Scholar 

  26. Chen F, Lin X, Li Y, Xu D, Qiu H, Yin S (2022) Metallacycle-crosslinked supramolecular polymers constructed by amino–YNE click reaction with enhanced mechanical properties. Supramol Mater 1:100003. https://doi.org/10.1016/j.supmat.2021.100003

    Article  Google Scholar 

  27. Chen S, Chen L, Wang Y, Wang C, Miao M, Zhang D (2019) Preparation of nanocomposites with epoxy resins and thiol-functionalized carbon nanotubes by thiol-ene click reaction. Polym Test 77:105912. https://doi.org/10.1016/j.polymertesting.2019.105912

    Article  CAS  Google Scholar 

  28. Hu Y, Wang W, Xu L, Yu D (2016) Surface modification of keratin fibers through step-growth dithiol-diacrylate thiol-ene click reactions. Mater Lett 178:159–162. https://doi.org/10.1016/j.matlet.2016.04.180

    Article  CAS  Google Scholar 

  29. Jin K, Heath WH, Torkelson JM (2015) Kinetics of multifunctional thiol-epoxy click reactions studied by differential scanning calorimetry: effects of catalysis and functionality. Polymer 81:70–78. https://doi.org/10.1016/j.polymer.2015.10.068

    Article  CAS  Google Scholar 

  30. Medellin-Castillo NA, Isaacs-PaezED R-M, Gonzalez-Garcia R, Labrada-Delgado GJ, Aragon-Pina A, Garcia-Arreola ME (2021) Formaldehyde and tripolyphosphate crosslinked chitosan hydrogels: synthesis, characterization and modeling. Int J Biol Macromol 183:2293–2304. https://doi.org/10.1016/j.ijbiomac.2021.06.020

    Article  CAS  PubMed  Google Scholar 

  31. Abou-Yousef H, Dacrory S, Hasanin M, Saber E, Kamel S (2021) Biocompatible hydrogel based on aldehyde-functionalized cellulose and chitosan for potential control drug release. Sustain Chem Pharm 21:100419. https://doi.org/10.1016/j.scp.2021.100419

    Article  CAS  Google Scholar 

  32. Pan D, Parshi N, Jana B, Prasad K, Ganguly J (2021) Optimization of the spontaneous adsorption of food colors from aqueous medium using functionalized chitosan/cinnamaldehyde hydrogel. Int J Biol Macromol 193:758–767. https://doi.org/10.1016/j.ijbiomac.2021.10.187

    Article  CAS  PubMed  Google Scholar 

  33. Liu Q, Xia N, Wan Y, Gao Y, Zhu S (2021) Selective capture of toxic anionic dyes of a novel prepared DMDAAC-grafted chitosan/genipin/cellulose hydrogel beads with antibacterial activity. Int J Biol Macromol 189:722–733. https://doi.org/10.1016/j.ijbiomac.2021.08.116

    Article  CAS  PubMed  Google Scholar 

  34. Feng R, Liu F, Guo Y, Ye M, He J, Zhou H, Liu L, Cai L, Zhang Y, Li R (2021) Exploring the role of chitosan in affecting the adhesive, rheological and antimicrobial properties of carboxymethyl cellulose composite hydrogels. Int J Biol Macromol 190:554–563. https://doi.org/10.1016/j.ijbiomac.2021.08.217

    Article  CAS  PubMed  Google Scholar 

  35. Ge Y, Chen X, Wang X, Yuan L, Wu J, Yao J (2022) Preparation, characterisation and antibacterial activity evaluation of N–acetylneuraminic acid-crosslinked chitosan hydrogels. Polym Test 106:107457. https://doi.org/10.1016/j.polymertesting.2021.107457

    Article  CAS  Google Scholar 

  36. Mauricio-Sánchez RA, Salazar R, Luna-Bárcenas JG, Mendoza-Galván A (2018) FTIR spectroscopy studies on the spontaneous neutralization of chitosan acetate films by moisture conditioning. Vib Spectrosc 94:1–6. https://doi.org/10.1016/j.vibspec.2017.10.005

    Article  CAS  Google Scholar 

  37. Abdalla TH, Nasr AS, Bassioni G, Harding DR, Kandile NG (2022) Fabrication of sustainable hydrogels-based chitosan Schiff base and their potential applications. Arab J Chem 15(1):103511. https://doi.org/10.1016/j.arabjc.2021.103511

    Article  CAS  Google Scholar 

  38. Yu S, Cui J, Jiang H, Zhong C, Meng J (2019) Facile fabrication of functional chitosan microspheres and study on their effective cationic/anionic dyes removal from aqueous solution. Int J Biol Macromol 134:830–837. https://doi.org/10.1016/j.ijbiomac.2019.04.208

    Article  CAS  PubMed  Google Scholar 

  39. Verma M, Lee I, Hong Y, Kumar V, Kim H (2022) Multifunctional beta–cyclodextrin-EDTA-chitosan polymer adsorbent synthesis for simultaneous removal of heavy metals and organic dyes from wastewater. Environ Pollut 292:118447. https://doi.org/10.1016/j.envpol.2021.118447

    Article  CAS  PubMed  Google Scholar 

  40. Pishnamazi M, Ghasemi S, Khosravi A, ZabihiSahebi A, Hasan-Zadeh A, Borghei SM (2021) Removal of Cu (ll) from industrial wastewater using poly(acrylamide-co-2-acrylamide-2-methyl propane sulfonic acid)/graphene oxide/sodium alginate hydrogel: isotherm, kinetics, and optimization study. J Water Process Eng 42:102144. https://doi.org/10.1016/j.jwpe.2021.102144

    Article  Google Scholar 

  41. Zhou G, Li S, Meng Q, Tian F, Sun L (2022) Synthesis and performance of a new temperature-sensitive and super-absorbent fire prevention hydrogel based on ultrasonic method. Colloids Surf A Physicochem Eng Asp 640:128399. https://doi.org/10.1016/j.colsurfa.2022.128399

    Article  CAS  Google Scholar 

  42. Chauhan GS, Garg G (2009) Study in sorption of Cr6+ and NO3 on poly (2-acrylamido-2-methylpropane-1-sulfonic acid) hydrogels. Desalination 239:1–9. https://doi.org/10.1016/j.desal.2008.02.021

    Article  CAS  Google Scholar 

  43. Rout DR, Jena HM (2022) Polyethylene glycol functionalized reduced graphene oxide coupled with zinc oxide composite adsorbent for removal of phenolic wastewater. Environ Res 214:114044. https://doi.org/10.1016/j.envres.2022.114044

    Article  CAS  PubMed  Google Scholar 

  44. Wang WR, Chen PY, Deng J, Chen Y, Liu HJ (2022) Carbon–dot hydrogels as superior carbonaceous adsorbents for removing perfluorooctane sulfonate from water. Chem Eng J 435:135021. https://doi.org/10.1016/j.cej.2022.135021

    Article  CAS  Google Scholar 

  45. Duran A, Soylak M, Tuncel SA (2008) Poly (vinyl pyridine-poly ethylene glycol methacrylate-ethylene glycol dimethacrylate) beads for heavy metal removal. J Hazard Mater 155:114–120

    Article  CAS  PubMed  Google Scholar 

  46. Wei J, Zhao Y, Yu S, Du J, Hu X, Bai G, Wang Z (2021) Environment-friendly dual-network hydrogel dust suppressant based on xanthan gum, polyvinyl alcohol and acrylic acid. J Environ Manage 295:113139. https://doi.org/10.1016/j.jenvman.2021.113139

    Article  CAS  PubMed  Google Scholar 

  47. Dhand AP, Galarraga JH, Burdick JA (2020) Enhancing biopolymer hydrogel functionality through interpenetrating networks. Trends Biotechnol 39(50):519–538. https://doi.org/10.1016/j.tibtech.2020.08.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Elwakeel KZ, Elgarahy AM, Al-Bogami AS, Hamza MF, Guibal E (2021) 2-Mercaptobenzimidazole-functionalized chitosan for enhanced removal of methylene blue: batch and column studies. J Environ Chem Eng 9(4):105609. https://doi.org/10.1016/j.jece.2021.105609

    Article  CAS  Google Scholar 

  49. Wei H, Yang J, Chu H, Yang Z, Ma C, Yao K (2011) Diels-alder reaction in water for the straightforward preparation of thermoresponsive hydrogels. J Appl Polym Sci 120(2):974–980. https://doi.org/10.1002/app.33116

    Article  CAS  Google Scholar 

  50. Fedorovich NE, Oudshoorn MH, van Geemen D, Hennink WE, Alblas J, Dhert WJA (2009) The effect of photopolymerization on stem cells embedded in hydrogels. Biomaterials 30:344–353. https://doi.org/10.1016/j.biomaterials.2008.09.037

    Article  CAS  PubMed  Google Scholar 

  51. Gallastegui A, Spesia MB, dell’Erba IE, Chesta CA, Previtali CM, Palacios RE, Gomez ML (2019) Controlled release of antibiotics from photopolymerized hydrogels: kinetics and microbiological studies. Mater Sci Eng C Mater Biol Appl 102:896–905. https://doi.org/10.1016/j.msec.2019.04.027

    Article  CAS  PubMed  Google Scholar 

  52. Li F, Li X, Wang Y, Zhang X (2019) Trismaleimide dendrimers: helix-to-superhelix supramolecular transition accompanied by white-light emission. Angew Chem Int Ed Engl 58(50):17994–18002. https://doi.org/10.1002/anie.201908837

    Article  CAS  PubMed  Google Scholar 

  53. Li X, Wang Y, Li F, Zhang X (2020) Fluorescent carbazole-containing dyes: synthesis and supramolecular assembly by self-complementary donor-acceptor π-stacking and dipolar interactions. Dyes Pigm 182:108474. https://doi.org/10.1016/j.dyepig.2020.108474

    Article  CAS  Google Scholar 

  54. Li X, Yu R, Zhao T, Zhang Y, Yang X, Zhao X, Huang W (2018) A self-healing polysiloxane elastomer based on siloxane equilibration synthesized through amino-ene michael addition reaction. Eur Polym J 108:399–405. https://doi.org/10.1016/j.eurpolymj.2018.09.021

    Article  CAS  Google Scholar 

  55. Wei H, Yang Z, Chen Y, Chu H, Zhu J, Li Z (2010) Characterisation of N–vinyl-2-pyrrolidone-based hydrogels prepared by a diels-alder click reaction in water. Eur Polym J 46(5):1032–1039. https://doi.org/10.1016/j.eurpolymj.2010.01.025

    Article  CAS  Google Scholar 

  56. Browe DP, Wood C, Sze MT, White KA, Scott T, Olabisi RM, Freeman JW (2017) Characterization and optimization of actuating poly(ethylene glycol) diacrylate/acrylic acid hydrogels as artificial muscles. Polymer 117:331–341. https://doi.org/10.1016/j.polymer.2017.04.044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Pawlak A, Mucha M (2003) Thermogravimetric and FTIR studies of chitosan blends. Thermochim Acta 396:153–166. https://doi.org/10.1016/S0040-6031(02)00523-3

    Article  CAS  Google Scholar 

  58. Akl ZF, El-Saeed SM, Atta AM (2016) In-situ synthesis of magnetite acrylamide amino-amidoxime nanocomposite adsorbent for highly efficient sorption of U(VI) ions. J Ind Eng Chem 34:105–116. https://doi.org/10.1016/j.jiec.2015.10.042

    Article  CAS  Google Scholar 

  59. Huang XY, Bu HT, Jiang GB, Zeng MH (2011) Cross-linked succinyl chitosan as an adsorbent for the removal of methylene blue from aqueous solution. Int J Biol Macromol 49(4):643–651. https://doi.org/10.1016/j.ijbiomac.2011.06.023

    Article  CAS  PubMed  Google Scholar 

  60. Ahmed ME, Mohamed HM, Mohamed I, Kandile N (2020) Sustainable antimicrobial modified chitosan and its nanoparticles hydrogels: synthesis and characterization. Int J Biol Macromol 162(1):1388–1397. https://doi.org/10.1016/j.ijbiomac.2020.08.048

    Article  CAS  PubMed  Google Scholar 

  61. Wang W, Hu J, Zhang R, Yan C, Cui L, Zhu J (2020) A pH-responsive carboxymethyl cellulose/chitosan hydrogel for adsorption and desorption of anionic and cationic dyes. Cellulose 28:897–909. https://doi.org/10.1007/s10570-020-03561-4

    Article  CAS  Google Scholar 

  62. Li N, Du J, Tan Y, Ling J, Yang X, Ma JJ, Wu R, Xu S, Zhang Y (2017) Dispersion and rheological behaviors of laponite in 2-acrylamido-2-methylpropanesulfonic acid solution. Appl Clay Sci 137:94–100. https://doi.org/10.1016/j.clay.2016.12.018

    Article  CAS  Google Scholar 

  63. Vedula SS, Yadav GD (2022) Wastewater treatment containing methylene blue dye as pollutant using adsorption by chitosan lignin membrane: development of membrane, characterization and kinetics of adsorption. J Indian Chem Soc 99(1):100263. https://doi.org/10.1016/j.jics.2021.100263

    Article  CAS  Google Scholar 

  64. Hassan H, Salama A, El-Ziaty AK, El-Sakhawy M (2019) New chitosan/silica/zinc oxide nanocomposite as adsorbent for dye removal. Int J Biol Macromol 131:520–526. https://doi.org/10.1016/j.ijbiomac.2019.03.087

    Article  CAS  PubMed  Google Scholar 

  65. Siddiqui SH (2018) The removal of Cu2+, Ni2+ and methylene blue (MB) from aqueous solution using luffa actangula carbon: kinetics, thermodynamic and isotherm and response methodology. Groundw Sustain Dev 6:141–149. https://doi.org/10.1016/j.gsd.2017.12.008

    Article  Google Scholar 

  66. Salama A, Hesemann P (2018) New N–guanidinium chitosan/silica ionic microhybrids as efficient adsorbent for dye removal from waste water. Int J Biol Macromol 111:762–768. https://doi.org/10.1016/j.ijbiomac.2018.01.049

    Article  CAS  PubMed  Google Scholar 

  67. Khanday WA, Asif M, Hameed BH (2017) Cross-linked beads of activated oil palm ash zeolite/chitosan composite as a bio-adsorbent for the removal of methylene blue and acid blue 29 dyes. Int J Biol Macromol 95:895–902. https://doi.org/10.1016/j.ijbiomac.2016.10.075

    Article  CAS  PubMed  Google Scholar 

  68. Chen P, Cao ZF, Wang S, Zhong H (2018) In situ nano-silicate functionalized magnetic composites by (poly)dopamine to improve MB removal. Colloids Surf A 552:89–97. https://doi.org/10.1016/j.colsurfa.2018.05.027

    Article  CAS  Google Scholar 

  69. Verma M, Lee I, Oh J, Kumar V, Kim H (2022) Synthesis of EDTA-functionalized graphene oxide-chitosan nanocomposite for simultaneous removal of inorganic and organic pollutants from complex wastewater. Chemosphere 287:132385–132385. https://doi.org/10.1016/j.chemosphere.2021.132385

    Article  CAS  PubMed  Google Scholar 

  70. Mahdavinia GR, Mosallanezhad A (2016) Facile and green rout to prepare magnetic and chitosan-crosslinked κ–carrageenan bionanocomposites for removal of methylene blue. J Water Process Eng 10:143–155. https://doi.org/10.1016/j.jwpe.2016.02.010

    Article  Google Scholar 

  71. Kang SC, Zhao YL, Wang W, Zhang TT, Chen TX, Yi H, Rao F, Song SX (2018) Removal of methylene blue from water with montmorillonite nanosheets/chitosan hydrogels as adsorbent. Appl Surf Sci 448:203–211. https://doi.org/10.1016/j.apsusc.2018.04.037

    Article  CAS  Google Scholar 

  72. İsmail O, Kocabay GÖ (2021) Absorption and adsorption studies of polyacrylamide/sodium alginate hydrogels. Colloid Polym Sci 299(5):783–796. https://doi.org/10.1007/s00396-020-04796-0

    Article  CAS  Google Scholar 

  73. Madduri S, Elsayed I, Hassan EB (2020) Novel oxone treated hydrochar for the removal of Pb(II) and methylene blue (MB) dye from aqueous solutions. Chemosphere 260:127683. https://doi.org/10.1016/j.chemosphere.2020.127683

    Article  CAS  PubMed  Google Scholar 

  74. Li W, Wei H, Liu Y, Li S, Wang G, Guo T, Han H (2021) An in situ reactive spray-drying strategy for facile preparation of starch-chitosan based hydrogel microspheres for water treatment application. Chem Eng Process 168:108548. https://doi.org/10.1016/j.cep.2021.108548

    Article  CAS  Google Scholar 

  75. Junlapong K, Maijan P, Chaibundit C, Chantarak S (2020) Effective adsorption of methylene blue by biodegradable superabsorbent cassava starch-based hydrogel. Int J Biol Macromol 158:258–264. https://doi.org/10.1016/j.ijbiomac.2020.04.247

    Article  CAS  PubMed  Google Scholar 

  76. Saleh TA, Al-Ruwayshid SH, Sarı A, Tuzen M (2020) Synthesis of silica nanoparticles grafted with copolymer of acrylic acrylamide for ultra-removal of methylene blue from aquatic solutions. Eur Polym J 130:109698. https://doi.org/10.1016/j.eurpolymj.2020.109698

    Article  CAS  Google Scholar 

  77. Lei C, Wen F, Chen M, Chen W, Huang Y, Wang B (2021) Mussel-inspired synthesis of magnetic carboxymethyl chitosan aerogel for removal cationic and anionic dyes from aqueous solution. Polymer 213:123316. https://doi.org/10.1016/j.polymer.2020.123316

    Article  CAS  Google Scholar 

  78. Li W, Wei H, Liu Y, Li S, Wang G, Han H (2021) Fabrication of novel starch-based composite hydrogel microspheres combining diels-alder reaction with spray drying for MB adsorption. J Environ Chem Eng 9(5):105929. https://doi.org/10.1016/j.jece.2021.105929

    Article  CAS  Google Scholar 

  79. Qi C, Zhao Q, Lin Y, Wu D (2018) Graphene oxide/chitosan sponge as a novel filtering material for the removal of dye from water. J Colloid Interface Sci 517:18–27. https://doi.org/10.1016/j.jcis.2018.01.089

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The work was supported by Natural Science Project of Zhengzhou Science and Technology Bureau [No. 21ZZXTCX14]; the Innovative Funds Plan of Henan University of Technology [grant No. 2021ZKCJ08]; Henan University of Technology [grant No. HAUTZX202003].

Author information

Authors and Affiliations

Authors

Contributions

All authors directly participated in the planning, execution, or analysis of this study. YZ and SH wrote drafts and did experiments; HW reviewed articles, revised articles and provided funding; WZ and JW analyzed the data and made graphs; SZ and YY proposed methods and provided innovation points. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Hongliang Wei.

Ethics declarations

Conflict of interest

The author declares that they have no conflict of interest.

Consent for publication

All authors agreed to publish.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 296 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeng, Y., Hou, S., Wei, H. et al. Fabrication of chitosan-based interpenetrating network hydrogel via sequential amino-maleimide click reaction and photopolymerization in water. Polym. Bull. 80, 10355–10378 (2023). https://doi.org/10.1007/s00289-022-04553-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-022-04553-z

Keywords

Navigation