Skip to main content
Log in

The formulation and microstructural, rheological, and textural characterization of salep-xanthan gum-based liposomal gels

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

This study aimed to determine the morphological, Rheological, and textural characterization of xanthan gum-salep liposomal gels. The particle size of liposomes (94.21 ± 0.57 nm) was increased in liposomal gels, and it was highest (116.83 ± 1.97 nm) in the K1S3 formulation. The surface charge of liposomes was − 37.40 ± 3.05 mV, and it was significantly decreased by the addition of polymers, changing between − 28.53 and − 30.63 mV. SEM analysis showed that the hydrogel and liposomal gels did not have any aggregation and had a bird net porous morphology and uniform distribution of liposomes. FTIR analysis revealed an interaction between xanthan gum-salep and lecithin. TEM analysis showed spherical structures of liposomes with no obvious aggregation and their size determined by TEM complied with the results taken by DLS analysis. The rheological properties of hydrogels and liposomal gels were characterized by steady shear, frequency, and temperature sweep test, and 3-ITT analysis. All hydrogels and liposomal gels samples showed non-Newtonian, solid-like, and recoverable characters, which increased with an increase in salep concentration in gel formulation. The textural properties of the both hydrogels and liposomal gels were significantly affected by salep-xanthan gum concentration in gels. The results of this study suggested that xanthan gum-salep liposomal gels with strong mechanical properties could be produced by increasing the salep ratio in gel formulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Yang Q, Peng J, Xiao H et al (2022) Polysaccharide hydrogels: functionalization, construction and served as scaffold for tissue engineering. Carbohydr Polym 278:118952. https://doi.org/10.1016/j.carbpol.2021.118952

    Article  CAS  PubMed  Google Scholar 

  2. Qu B, Luo Y (2020) Chitosan-based hydrogel beads: preparations, modifications and applications in food and agriculture sectors – a review. Int J Biol Macromol 152:437–448. https://doi.org/10.1016/j.ijbiomac.2020.02.240

    Article  CAS  PubMed  Google Scholar 

  3. Liu Y, Liang D (2011) Hydrogel integrated with liposome: a two-stage drug delivery system. J Control Release 152(Suppl):e63–e64. https://doi.org/10.1016/j.jconrel.2011.08.124

    Article  CAS  PubMed  Google Scholar 

  4. Liu W, Kong Y, Ye A et al (2020) Preparation, formation mechanism and in vitro dynamic digestion behavior of quercetin-loaded liposomes in hydrogels. Food Hydrocoll 104:105743. https://doi.org/10.1016/j.foodhyd.2020.105743

    Article  CAS  Google Scholar 

  5. Wang X, Zhou D, Guo Q, Liu C (2021) Textural and structural properties of a κ-carrageenan–konjac gum mixed gel: effects of κ-carrageenan concentration, mixing ratio, sucrose and Ca2+ concentrations and its application in milk pudding. J Sci Food Agric 101:3021–3029. https://doi.org/10.1002/jsfa.10936

    Article  CAS  PubMed  Google Scholar 

  6. Jiang S, Shang L, Liang H et al (2022) Preparation of konjac glucomannan/xanthan gum/sodium alginatecomposite gel by freezing combining moisture regulation. Food Hydrocoll 127:107499. https://doi.org/10.1016/j.foodhyd.2022.107499

    Article  CAS  Google Scholar 

  7. Long J, Etxeberria AE, Nand AV et al (2019) A 3D printed chitosan-pectin hydrogel wound dressing for lidocaine hydrochloride delivery. Mater Sci Eng C 104:109873. https://doi.org/10.1016/j.msec.2019.109873

    Article  CAS  Google Scholar 

  8. Ehterami A, Salehi M, Farzamfar S et al (2019) Chitosan/alginate hydrogels containing Alpha-tocopherol for wound healing in rat model. J Drug Deliv Sci Technol 51:204–213. https://doi.org/10.1016/j.jddst.2019.02.032

    Article  CAS  Google Scholar 

  9. Acar H, Kurt A (2020) Purified salep glucomannan synergistically interacted with xanthan gum: Rheological and textural studies on a novel pH-/thermo-sensitive hydrogel. Food Hydrocoll 101:105463. https://doi.org/10.1016/j.foodhyd.2019.105463

    Article  CAS  Google Scholar 

  10. Bardajee GR, Hooshyar Z (2014) One-pot synthesis of biocompatible superparamagnetic iron oxide nanoparticles/hydrogel based on salep: Characterization and drug delivery. Carbohydr Polym 101:741–751. https://doi.org/10.1016/j.carbpol.2013.10.028

    Article  CAS  PubMed  Google Scholar 

  11. Kaya S, Tekin AR (2001) Effect of salep content on the rheological characteristics of a typical ice-cream mix. J Food Eng 47:59–62. https://doi.org/10.1016/S0260-8774(00)00093-5

    Article  Google Scholar 

  12. Kurt A (2021) Salep glucomannan: properties and applications. Polysaccharides. https://doi.org/10.1002/9781119711414.ch9

    Article  Google Scholar 

  13. Yang X, Shi L, Guo X et al (2016) Convergent in situ assembly of injectable lipogel for enzymatically controlled and targeted delivery of hydrophilic molecules. Carbohydr Polym 154:62–69. https://doi.org/10.1016/j.carbpol.2016.08.028

    Article  CAS  PubMed  Google Scholar 

  14. Khalesi H, Lu W, Nishinari K, Fang Y (2020) New insights into food hydrogels with reinforced mechanical properties: A review on innovative strategies. Adv Colloid Interface Sci 285:102278. https://doi.org/10.1016/j.cis.2020.102278

    Article  CAS  PubMed  Google Scholar 

  15. Dong S, Feng S, Liu F et al (2021) Factors influencing the adhesive behavior of carboxymethyl cellulose-based hydrogel for food applications. Int J Biol Macromol 179:398–406. https://doi.org/10.1016/j.ijbiomac.2021.03.027

    Article  CAS  PubMed  Google Scholar 

  16. Capra P, Musitelli G, Perugini P (2017) Wetting and adhesion evaluation of cosmetic ingredients and products: correlation of in vitro–in vivo contact angle measurements. Int J Cosmet Sci 39:393–401. https://doi.org/10.1111/ics.12388

    Article  CAS  PubMed  Google Scholar 

  17. Serrero A, Trombotto S, Bayon Y et al (2011) Polysaccharide-based adhesive for biomedical applications: correlation between rheological behavior and adhesion. Biomacromol 12:1556–1566. https://doi.org/10.1021/bm101505r

    Article  CAS  Google Scholar 

  18. Ramli NA, Ali N, Hamzah S, Yatim NI (2021) Physicochemical characteristics of liposome encapsulation of stingless bees’ propolis. Heliyon 7:e06649. https://doi.org/10.1016/j.heliyon.2021.e06649

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Cao D, Zhang X, Akabar MD et al (2019) Liposomal doxorubicin loaded PLGA-PEG-PLGA based thermogel for sustained local drug delivery for the treatment of breast cancer. Artif Cells, Nanomed Biotechnol 47:181–191. https://doi.org/10.1080/21691401.2018.1548470

    Article  CAS  PubMed  Google Scholar 

  20. Ruozi B, Belletti D, Tombesi A et al (2011) AFM, ESEM, TEM, and CLSM in liposomal characterization: a comparative study. Int J Nanomed 6:557–563. https://doi.org/10.2147/ijn.s14615

    Article  CAS  Google Scholar 

  21. Mourtas S, Haikou M, Theodoropoulou M et al (2008) The effect of added liposomes on the rheological properties of a hydrogel: a systematic study. J Colloid Interface Sci 317:611–619. https://doi.org/10.1016/j.jcis.2007.09.070

    Article  CAS  PubMed  Google Scholar 

  22. Araújo D, Alves VD, Campos J et al (2016) Assessment of the adhesive properties of the bacterial polysaccharide FucoPol. Int J Biol Macromol 92:383–389. https://doi.org/10.1016/j.ijbiomac.2016.07.035

    Article  CAS  PubMed  Google Scholar 

  23. Ortan A, Parvu CD, Ghica MV et al (2011) Rheological study of a liposomal hydrogel based on carbopol. Rom Biotechnol Lett 16:47–54

    CAS  Google Scholar 

  24. Nair R, Roy Choudhury A (2020) Synthesis and rheological characterization of a novel shear thinning levan gellan hydrogel. Int J Biol Macromol 159:922–930. https://doi.org/10.1016/j.ijbiomac.2020.05.119

    Article  CAS  PubMed  Google Scholar 

  25. Kurt A (2018) Modulating hydrogel characteristics of deacetylated salep glucomannan by blending xanthan gum. Airl Spons 19:15

    Google Scholar 

  26. Han X, Huang J, To AKW et al (2020) CEST MRI detectable liposomal hydrogels for multiparametric monitoring in the brain at 3T. Theranostics 10:2215–2228. https://doi.org/10.7150/thno.40146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Toker OS, Karasu S, Yilmaz MT, Karaman S (2015) Three interval thixotropy test (3ITT) in food applications: a novel technique to determine structural regeneration of mayonnaise under different shear conditions. Food Res Int 70:125–133. https://doi.org/10.1016/j.foodres.2015.02.002

    Article  CAS  Google Scholar 

  28. D’Elía NL, Rial Silva R, Sartuqui J et al (2020) Development and characterisation of bilayered periosteum-inspired composite membranes based on sodium alginate-hydroxyapatite nanoparticles. J Colloid Interface Sci 572:408–420. https://doi.org/10.1016/j.jcis.2020.03.086

    Article  CAS  PubMed  Google Scholar 

  29. Ramesh S, Kovelakuntla V, Meyer AS (2021) Three-dimensional printing of stimuli-responsive hydrogel with antibacterial activity. Bioprinting 24:e00106. https://doi.org/10.1016/j.bprint.2020.e00106

    Article  Google Scholar 

  30. Cuomo F, Cofelice M, Lopez F (2019) Rheological characterization of hydrogels from alginate-based nanodispersion. Polymers (Basel). https://doi.org/10.3390/polym11020259

    Article  PubMed  Google Scholar 

  31. Moreira HR, Munarin F, Gentilini R et al (2014) Injectable pectin hydrogels produced by internal gelation: PH dependence of gelling and rheological properties. Carbohydr Polym 103:339–347. https://doi.org/10.1016/j.carbpol.2013.12.057

    Article  CAS  PubMed  Google Scholar 

  32. Koynova R, Caffrey M (1998) Phases and phase transitions of the phosphatidylcholines. Biochim Biophys Acta - Rev Biomembr 1376:91–145. https://doi.org/10.1016/S0304-4157(98)00006-9

    Article  CAS  Google Scholar 

  33. Pippa N, Perinelli DR, Pispas S et al (2018) Studying the colloidal behavior of chimeric liposomes by cryo-TEM, micro-differential scanning calorimetry and high-resolution ultrasound spectroscopy. Colloids Surfaces A Physicochem Eng Asp 555:539–547. https://doi.org/10.1016/j.colsurfa.2018.07.025

    Article  CAS  Google Scholar 

  34. Ulrich AS (2002) Biophysical aspects of using liposomes as delivery vehicles. Biosci Rep 22:129–150. https://doi.org/10.1023/A:1020178304031

    Article  CAS  PubMed  Google Scholar 

  35. Kaplan M, Tuğcu-Demiröz F, Vural İ, Çelebi N (2018) Development and characterization of gels and liposomes containing ovalbumin for nasal delivery. J Drug Deliv Sci Technol 44:108–117. https://doi.org/10.1016/j.jddst.2017.12.006

    Article  CAS  Google Scholar 

  36. Hurler J, Žakelj S, Mravljak J et al (2013) The effect of lipid composition and liposome size on the release properties of liposomes-in-hydrogel. Int J Pharm 456:49–57. https://doi.org/10.1016/j.ijpharm.2013.08.033

    Article  CAS  PubMed  Google Scholar 

  37. Chandra MV, Shamasundar BA (2015) Texture profile analysis and functional properties of gelatin from the skin of three species of fresh water fish. Int J Food Prop 18:572–584. https://doi.org/10.1080/10942912.2013.845787

    Article  CAS  Google Scholar 

  38. Aguilar-Zárate M, Macias-Rodriguez BA, Toro-Vazquez JF, Marangoni AG (2019) Engineering rheological properties of edible oleogels with ethylcellulose and lecithin. Carbohydr Polym 205:98–105. https://doi.org/10.1016/j.carbpol.2018.10.032

    Article  CAS  PubMed  Google Scholar 

  39. Cevher E, Taha MAM, Orlu M, Araman A (2008) Evaluation of mechanical and mucoadhesive properties of clomiphene citrate gel formulations containing carbomers and their thiolated derivatives. Drug Deliv 15:57–67. https://doi.org/10.1080/10717540701829234

    Article  CAS  PubMed  Google Scholar 

  40. Xu P, Song J, Dai Z et al (2021) Effect of Ca2+ cross-linking on the properties and structure of lutein-loaded sodium alginate hydrogels. Int J Biol Macromol 193:53–63. https://doi.org/10.1016/j.ijbiomac.2021.10.114

    Article  CAS  PubMed  Google Scholar 

  41. Eren B, Tuncay Tanrıverdi S, Aydın Köse F, Özer Ö (2019) Antioxidant properties evaluation of topical astaxanthin formulations as anti-aging products. J Cosmet Dermatol 18:242–250. https://doi.org/10.1111/jocd.12665

    Article  PubMed  Google Scholar 

  42. Das D, Pham HTT, Lee S, Noh I (2019) Fabrication of alginate-based stimuli-responsive, non-cytotoxic, terpolymric semi-IPN hydrogel as a carrier for controlled release of bovine albumin serum and 5-amino salicylic acid. Mater Sci Eng C 98:42–53. https://doi.org/10.1016/j.msec.2018.12.127

    Article  CAS  Google Scholar 

  43. Rahman MS, Al-Mahrouqi AI (2009) Instrumental texture profile analysis of gelatin gel extracted from grouper skin and commercial (bovine and porcine) gelatin gels. Int J Food Sci Nutr 60:229–242. https://doi.org/10.1080/09637480902984414

    Article  CAS  PubMed  Google Scholar 

  44. Owczarz P, Rył A, Wichłacz Ż (2019) Application of texture profile analysis to investigate the mechanical properties of thermosensitive injectable chitosan hydrogels. Prog Chem Appl Chitin its Deriv 24:151–163. https://doi.org/10.15259/PCACD.24.014

    Article  CAS  Google Scholar 

  45. Adrar N, Bahadori F, Ceylan FD et al (2021) Stability evaluation of interdigitated liposomes prepared with a combination of 1,2-distearoyl-sn-glycero-3-phosphocholine and 1,2-dilauroyl-sn-glycero-3-phosphocholine. J Chem Technol Biotechnol 96:2537–2546. https://doi.org/10.1002/jctb.6793

    Article  CAS  Google Scholar 

  46. Kuligowski J, Quintás G, Esteve-Turrillas FA et al (2008) On-line gel permeation chromatography-attenuated total reflectance-Fourier transform infrared determination of lecithin and soybean oil in dietary supplements. J Chromatogr A 1185:71–77. https://doi.org/10.1016/j.chroma.2008.01.048

    Article  CAS  PubMed  Google Scholar 

  47. Kurt A, Kahyaoglu T (2017) Purification of glucomannan from salep: part 2. Struct Characteriz Carbohydr Polym 169:406–416. https://doi.org/10.1016/j.carbpol.2017.04.052

    Article  CAS  Google Scholar 

  48. Faria S, De Oliveira Petkowicz CL, De Morais SAL et al (2011) Characterization of xanthan gum produced from sugar cane broth. Carbohydr Polym 86:469–476. https://doi.org/10.1016/j.carbpol.2011.04.063

    Article  CAS  Google Scholar 

  49. Li P, Li T, Zeng Y et al (2016) Biosynthesis of xanthan gum by Xanthomonas campestris LRELP-1 using kitchen waste as the sole substrate. Carbohydr Polym 151:684–691. https://doi.org/10.1016/j.carbpol.2016.06.017

    Article  CAS  PubMed  Google Scholar 

  50. Tantipolphan R, Rades T, Medlicott NJ (2009) Swelling lecithin: cholesterol implants for the controlled release of proteins. J Liposome Res 19:37–48. https://doi.org/10.1080/08982100802636434

    Article  CAS  PubMed  Google Scholar 

  51. Sarabandi K, Mahoonak AS, Hamishehkar H et al (2019) Protection of casein hydrolysates within nanoliposomes: antioxidant and stability characterization. J Food Eng 251:19–28. https://doi.org/10.1016/j.jfoodeng.2019.02.004

    Article  CAS  Google Scholar 

  52. Acemi A, Çobanoğlu Ö, Türker-Kaya S (2019) FTIR-based comparative analysis of glucomannan contents in some tuberous orchids, and effects of pre-processing on glucomannan measurement. J Sci Food Agric 99:3681–3686. https://doi.org/10.1002/jsfa.9596

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by The Scientific and Technological Research Council of Turkey (TUBITAK) and the project number was 120O315.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Salih Karasu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1106 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saroglu, O., Karadag, A., Cakmak, Z.H.T. et al. The formulation and microstructural, rheological, and textural characterization of salep-xanthan gum-based liposomal gels. Polym. Bull. 80, 9941–9962 (2023). https://doi.org/10.1007/s00289-022-04546-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-022-04546-y

Keywords

Navigation