Skip to main content
Log in

Interpenetrating network nanocomposite hydrogels as efficient adsorbents for the removal of total impurities from industrial lean methyldiethanolamine solution

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Natural gas can be sweetened by removing acidic gases with aqueous methyldiethanolamine (MDEA) solvents. Heavy metal ions and total organic acid anions (TOA) contaminate the industrial lean MDEA during this process. Continuous accumulation of these impurities creates operational problems, such as corrosion, fouling, and foaming of the operational unit. In this study, a series of interpenetrating network (IPN) nanocomposite hydrogels based on sodium alginate and acrylamide were successfully synthesized in the presence of fillers, such as silica (Alg-Aam-SiO2), polyaniline-coated silica (Alg-Aam-PA-SiO2), graphene oxide (Alg-Aam-GO), and thermally reduced graphene oxide (Alg-Aam-TRGO). The synthesized IPN hydrogels were applied for the adsorption of TOA and heavy metals (chromium and iron) simultaneously from lean MDEA. Different characterization techniques, such as FTIR, Raman, TGA, XRD, SEM, TEM, and equilibrium swelling studies, were performed to understand the superiority of the hydrogels. The maximum monolayer adsorption capacity of TOA anions at 53 °C was 21.45 mg/g for Alg-Aam, 23.47 mg/g for Alg-Aam-SiO2, 20.16 mg/g for Alg-Aam-PA-SiO2, 19.19 mg/g for Alg-Aam-TRGO, and 15.29 mg/g for Alg-Aam-GO. Thermodynamically, the adsorption of all contaminants was favorable, spontaneous, and endothermic. The produced Alg-Aam-based nanocomposite hydrogels are a great candidate for purifying the contaminated lean MDEA solvents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Farahbod F (2019) Investigation of gas sweetening by nanofluid in isothermal tower with consideration of thermodynamic equilibrium; experimentally and theoretically. Sep Purif Technol 21:799–808. https://doi.org/10.1016/j.seppur.2018.10.050

    Article  CAS  Google Scholar 

  2. Momeni M, ElyasiKojabad B, Khanmohammadi S, Farshadi Z, Ghalandarzadeh R, Babaluo A, Zare M (2019) Impact of support on the fabrication of poly (ether-b-amid) composite membrane and economic evaluation for natural gas sweetening. J Nat Gas Sci Eng 62:236–246. https://doi.org/10.1016/j.jngse.2018.12.014

    Article  CAS  Google Scholar 

  3. Maddox RN (1985) Gas conditioning and processing: gas and liquid sweetening. Campbell petroleum series, Oklahama

    Google Scholar 

  4. Manteghian M, Haddad J (2018) Reduction of chloride in amine from gas sweetening unit using a continuous virtual counter current ion exchange setup. J Nat Gas Sci Eng 56:568–578. https://doi.org/10.1016/j.jngse.2018.06.022

    Article  CAS  Google Scholar 

  5. Verma N, Verma A (2009) Amine system problems arising from heat stable salts and solutions to improve system performance. Fuel Process Technol 90:483–489. https://doi.org/10.1016/j.fuproc.2009.02.002

    Article  CAS  Google Scholar 

  6. Gao J, Wang S, Sun C, Zhao B, Chen C (2012) Corrosion behavior of carbon steel at typical positions of an amine-based CO2 capture pilot plant. Ind Eng Chem Res 51:6714–6721. https://doi.org/10.1021/ie203045v

    Article  CAS  Google Scholar 

  7. Singh SL, Veerakumar U, Abbas A (2016) Control of contaminates & degradation products in amines during sour gas treatment. Abu Dhabi international petroleum exhibition and conference, Society of Petroleum Engineers, Abu Dhabi. https://doi.org/10.2118/182984-MS

  8. Bayati B, Mirshekari M, Veisy A, Gando-Ferreira LM (2018) Removal of HSS from industrial amine solution by anionic resin (case study: ilam gas refinery). Chem Pap 73:491–500. https://doi.org/10.1007/s11696-018-0598-0

    Article  CAS  Google Scholar 

  9. Abdi MA, Meisen A (1999) A novel process for diethanolamine recovery from partially degraded solutions. 1. process description and phase equilibria of the DEA-BHEP-THEED-Hexadecane system. Ind Eng Chem Res 38:3096–3104. https://doi.org/10.1021/ie980454t

    Article  CAS  Google Scholar 

  10. Abdi MA, Meisen A (1999) A novel process for diethanolamine recovery from partially degraded solutions. 2 Process analysis. Ind Eng Chem Res 38:3105–3114. https://doi.org/10.1021/ie9804531

    Article  CAS  Google Scholar 

  11. Tavan Y, Moradi M, Rostami A, Azizpour H (2020) Theoretical and industrial aspects of amine reclaiming unit to separate heat stable salts. Sep Purif Technol 237:116314. https://doi.org/10.1016/j.seppur.2019.116314

    Article  CAS  Google Scholar 

  12. Pal P, Banat F, AlShoaibi A (2013) Adsorptive removal of heat stable salt anions from industrial lean amine solvent using anion exchange resins from gas sweetening unit. J Nat Gas Sci Tech 15:14–21. https://doi.org/10.1016/j.jngse.2013.08.001

    Article  CAS  Google Scholar 

  13. Pal P, Banat F (2013) Comparison of heavy metal ions removal from industrial lean amine solvent using ion exchange resins and sand coated with chitosan. J Nat Gas Sci Technol 18:227–236. https://doi.org/10.1016/j.jngse.2014.02.015

    Article  CAS  Google Scholar 

  14. Pal P, Banat F (2015) Removal of contaminants from industrial lean amine solvent using polyacrylamide hydrogels optimized by response surface methodology. Adsorp Sci Technol 33:9–24. https://doi.org/10.1260/0263-6174.33.1.9

    Article  CAS  Google Scholar 

  15. Pal P, Edathil AA, Banat F (2019) Calcium alginate gel and hard beads for the removal of total organic acid anions and heavy metal ions from industrial lean methyldiethanolamine solvent. Poly Bull 76:103–118. https://doi.org/10.1007/s00289-018-2376-0

    Article  CAS  Google Scholar 

  16. Edathil AA, Alhseinat E, Banat F (2019) Removal of heat stable salts from industrial lean methyldiethanolamine using magnetic alginate/iron oxide hydrogel composite. Int J Greenh Gas Control 83:117–127. https://doi.org/10.1016/j.ijggc.2019.02.005

    Article  CAS  Google Scholar 

  17. Edathil AA, Pal P, Banat F (2018) Alginate clay hybrid composite adsorbents for the reclamation of industrial lean methyldiethanolamine solutions. Appl Clay Sci 156:213–223. https://doi.org/10.1016/j.clay.2018.02.015

    Article  CAS  Google Scholar 

  18. Edathil AA, Pal P, Kannan P, Banat F (2020) Total organic acid adsorption using alginate/clay hybrid composite for industrial lean amine reclamation using fixed-bed: parametric study coupled with foaming. Int J Greenh Gas Control 94:102907. https://doi.org/10.1016/j.ijggc.2019.102907

    Article  CAS  Google Scholar 

  19. Ma J, Zhou G, Chu L, Liu Y, Liu C, Luo S, Wei Y (2017) Efficient removal of heavy metal ions with an EDTA functionalized chitosan/polyacrylamide double network hydrogel. ACS Sustain Chem Eng 5:843–851. https://doi.org/10.1021/acssuschemeng.6b02181

    Article  CAS  Google Scholar 

  20. Guoqing X, Fangzhou L, Yuanyuan L, Chunyan C, Chunlin C, Qian L, Wanxin C (2022) A novel biomass material composite hydrogel based on sodium alginate. Colloids Surf A Physicochem Eng Asp 648:129383. https://doi.org/10.1016/j.colsurfa.2022.129383

    Article  CAS  Google Scholar 

  21. Yoshimi S, Hideaki T (2022) Hydrogel adsorbents for the removal of hazardous pollutants—requirements and available functions as adsorbent. Gels 8(4):220. https://doi.org/10.3390/gels8040220

    Article  CAS  Google Scholar 

  22. Zenab D, Syed S, Rama G, Irfan A, Nanthini S (2022) Hydrogel-based adsorbent material for the effective removal of heavy metals from wastewater: a comprehensive review. Gels 8(5):263. https://doi.org/10.3390/gels8050263

    Article  CAS  Google Scholar 

  23. Bahrami Z, Akbari A, Eftekhari-Sis B (2019) Double network hydrogel of sodium alginate/polyacrylamide cross-linked with POSS: swelling, dye removal and mechanical properties. Int J Biol Macromol 129:187–197. https://doi.org/10.1016/j.ijbiomac.2019.02.046

    Article  CAS  PubMed  Google Scholar 

  24. Olad A, Zebhi H, Salari D, Mirmohseni A, Reyhanitabar A (2018) A promising porous polymer-nanoclay hydrogel nanocomposite as water reservoir material: synthesis and kinetic study. J Porous Mater 25:665–675. https://doi.org/10.1007/s10934-017-0479-x

    Article  CAS  Google Scholar 

  25. Oladipo AA, Gazi M (2015) Microwaves initiated synthesis of activated carbon-based composite hydrogel for simultaneous removal of copper(II) ions and direct red 80 dye: a multi-component adsorption system. J Taiwan Inst Chem Eng 47:125–136. https://doi.org/10.1016/j.jtice.2014.09.027

    Article  CAS  Google Scholar 

  26. He J, Jin J, Wang Z, Yin H, Wei C, Xu X (2018) Encapsulating nanosilica into polyacrylic acid and chitosan interpenetrating network hydrogel for preconcentration of uranium from aqueous solutions. J Radio Nucl Chem 317:1299–1309. https://doi.org/10.1007/s10967-018-6034-7

    Article  CAS  Google Scholar 

  27. MahmoudFekry MENA, El-Latif MMA (2016) Nanocomposites of nanosilica-immobilized-nanopolyaniline and cross-linked nanopolyaniline for removal of heavy metals. Chem Eng J 304:679–691. https://doi.org/10.1016/j.cej.2016.06.11

    Article  Google Scholar 

  28. Hayati B, Maleki A, Najafi F, Gharibi F, Mckay G, Gupta VK, Marzban N (2018) Heavy metal adsorption using PAMAM/CNT nanocomposite from aqueous solution in batch and continuous fixed bed systems. Chem Eng J 346:258–270. https://doi.org/10.1016/j.cej.2018.03.172

    Article  CAS  Google Scholar 

  29. Fan J, Shi Z, Lian M, Li H, Yin J (2013) Mechanically strong graphene oxide/sodium alginate/polyacrylamide nanocomposite hydrogel with improved dye adsorption capacity. J Mater Chem A 1:7433–7443. https://doi.org/10.1039/C3TA10639J

    Article  CAS  Google Scholar 

  30. Li J, Gunister E, Barsoum I (2019) Effect of graphene oxide as a filler material on the mechanical properties of LLDPE nanocomposites. J Compos Mat 53:2761–2773. https://doi.org/10.1177/0021998319839215

    Article  CAS  Google Scholar 

  31. Pei H, Wufeng C, Lifeng Y (2013) An inorganic-organic double network hydrogel of graphene and polymer. Nanoscale 5:6034–6039. https://doi.org/10.1039/C3NR00214D

    Article  Google Scholar 

  32. Wang J, Zheng S, Shao Y, Liu J, Xu Z, Zhu D (2010) Amino-functionalized Fe3O4@SiO2 core-shell magnetic nanomaterial as a novel adsorbent for aqueous heavy metals removal. J Colloid Interface Sci 349:293–299. https://doi.org/10.1016/j.jcis.2010.05.010

    Article  CAS  PubMed  Google Scholar 

  33. Pourjavadi A, Tehrani ZM, Salimi H, Banazadeh A, Abedini N (2015) Hydrogel nanocomposite based on chitosan-g-acrylic acid and modified nanosilica with high adsorption capacity for heavy metal ion removal. Iran Polym J 24:725–734. https://doi.org/10.1007/s13726-015-0360-1

    Article  CAS  Google Scholar 

  34. Saadia L, Imane M, Abdelkader EK, Lilia S, M’hamed K, Abdelghani B (2022) Application of activated carbon adsorbents prepared from prickly pear fruit seeds and a conductive polymer matrix to remove congo red from aqueous solutions. Fibers 10(1):7. https://doi.org/10.3390/fib10010007

    Article  CAS  Google Scholar 

  35. Daikh S, Ouis D, Benyouce A, Mouffok B (2022) Equilibrium, kinetic and thermodynamic studies for evaluation of adsorption capascity of a new potential hybrid adsorbent based on polyaniline and chitosan for Acetaminophen. Chem Phys Lett 798:139565. https://doi.org/10.1016/j.cplett.2022.139565

    Article  CAS  Google Scholar 

  36. Ali N, Pal P, Banat F, Srinivasakannan C (2019) Selective removal of diethanolamine from methyldiethanolamine solution using chemically reduced single-layer graphene and activated carbon. Sep Sci Technol 54:2671–2681. https://doi.org/10.1080/01496395.2018.1549569

    Article  CAS  Google Scholar 

  37. Sitko R, Turek E, Zawisza B, Malicka E, Talik E, Heimann J, Gagor A, Feista B, Wrzalik R (2013) Adsorption of divalent metal ions from aqueous solutions using graphene oxide. Dalton Trans 42:5682–5689. https://doi.org/10.1039/c3dt33097d

    Article  CAS  PubMed  Google Scholar 

  38. Langmuir I (1918) The adsorption of gases on plane surface of glass, mica and platinum. J Am Chem Soc 40:1361–1403. https://doi.org/10.1021/ja02242a004

    Article  CAS  Google Scholar 

  39. Freundlich HM (1906) Over the adsorption in solution. J Phys Chem 57:385–470

    CAS  Google Scholar 

  40. Tran HN, You S, Chao H (2016) Thermodynamic parameters of cadmium adsorption onto orange peel calculated from various methods: a comparison study. J Environ Chem Eng 4:2671–2682. https://doi.org/10.1016/j.jece.2016.05.009

    Article  CAS  Google Scholar 

  41. Elanthamilan E, Sathiyan A, Rajkumar S, Sheryl EJ, Merlin JP (2018) Polyaniline based charcoal/Ni nanocomposite material for high performance supercapacitors. Sustain Energy Fuels 2:811–819. https://doi.org/10.1039/C7SE00490G

    Article  CAS  Google Scholar 

  42. Angela K, Jozef H, Vlasta S, Milan P, Vladimír Š, Juraj P (2015) FTIR spectroscopy of silicon carbide thin films prepared by PECVD technology for solar cell application. Proc SPIE. https://doi.org/10.1117/122186748

    Article  Google Scholar 

  43. Alves TVG, Tavares EJM, Aouada FA, Negrão CAB, Oliveira MEC, Júnior APD, da Costa CEF, Júnior JOCS, Costa RMR (2011) Thermal analysis characterization of PAAm-co-MC hydrogels. J Therm Anal Calorim 106:717–724. https://doi.org/10.1007/s10973-011-1572-z

    Article  CAS  Google Scholar 

  44. Gautam V, Srivastava A, Singh KP, Yadav VL (2017) Preparation and characterization of polyaniline, multiwall carbon nanotubes, and starch bionanocomposite material for potential bioanalytical applications. Polym Compos 38:496–506. https://doi.org/10.1002/pc.23608

    Article  CAS  Google Scholar 

  45. Iqbal MZ, Pal P, Shoaib M, Abdala AA (2017) Efficient removal of different basic dyes using graphene. Desalin Water Treat 68:226–235. https://doi.org/10.5004/dwt.2017.20213

    Article  CAS  Google Scholar 

  46. Cheng Y, Luo X, Betz J, Payne GF, Bentley WE, Rubloff GW (2011) Mechanism of anodic electrodeposition of calcium alginate. Soft Mat 7:5677–5684. https://doi.org/10.1039/C1SM05210A

    Article  CAS  Google Scholar 

  47. Jonathan N (1961) The infrared and Raman spectra and structure of acrylamide. J Mol Spec 6:205–214. https://doi.org/10.1016/0022-2852(61)90243-0

    Article  CAS  Google Scholar 

  48. Biswas RK, Khan P, Mukherjee S, Mukhopadhyay AK, Ghosh J, Muraleedharan K (2018) Study of short range structure of amorphous silica from PDF using Ag radiation in laboratory XRD system, RAMAN and NEXAFS. J Non-Cryst Solids 488:1–9. https://doi.org/10.1016/j.jnoncrysol.2018.02.037

    Article  CAS  Google Scholar 

  49. Wang R, Han M, Zhao Q, Ren Z, Guo X, Hu CN, Lu L (2017) Hydrothermal synthesis of nanostructured graphene/polyaniline composites as high-capacitance electrode materials for supercapacitors. Sci Rep 7:44562. https://doi.org/10.1038/srep44562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Jianfeng S, Bo Y, Tie L, Yu L, Na L, Mingxin Y (2012) Study on graphene-oxide-based polyacrylamide composite hydrogels. Compos Part A Appl Sci Manuf 43:1476–1481. https://doi.org/10.1016/j.compositesa.2012.04.006

    Article  CAS  Google Scholar 

  51. Oh T, Choi CK (2010) Comparison between SiOC thin film by plasma enhance chemical vapor deposition and SiO2 thin film by Fourier transform infrared spectroscopy. J Korean Phys Soc 56:1150–1155. https://doi.org/10.3938/jkps.56.1150

    Article  CAS  Google Scholar 

  52. Samanta HS, Ray SK (2014) Synthesis, characterization, swelling and drug release behavior of semi-interpenetrating network hydrogels of sodium alginate and polyacrylamide. Carbohydr Polym 99:666–678. https://doi.org/10.1016/j.carbpol.2013.09.004

    Article  CAS  PubMed  Google Scholar 

  53. Karlowatz M, Aleksandrov A, Orlando T, Cathcart JM, Mizaikoff B (2004) The influence of wetting and drying cycles on mid-infrared attenuated total-reflection spectra of quartz: understanding spectroscopy of disturbed soil. Proc SPIE. https://doi.org/10.1117/12542898

    Article  Google Scholar 

  54. Hussein A, Sarkar S, Kim B (2016) Low temperature reduction of graphene oxide using hot-plate for nanocomposites applications. J Mat Sci Tech 32:411–418. https://doi.org/10.1016/j.jmst.2016.02.001

    Article  CAS  Google Scholar 

  55. Shehab AM, Abdelbary ESM, Elsherbiny IM, Butler IS, Mostafa SI (2019) Efficient adsorption of Cd (II) ions from aqueous media onto a semi-interpenetrating bio-composite. Environ Prog Sustain Energy 38:e13253. https://doi.org/10.1002/ep.13253

    Article  CAS  Google Scholar 

  56. Kamata H, Akagi Y, Kayasuga-Kariya Y, Chung U, Sakai T (2014) “Nonswellable” hydrogel without mechanical hysteresis. Science 343:873–875. https://doi.org/10.1126/science.1247811

    Article  CAS  PubMed  Google Scholar 

  57. Lim LS, Rosli NA, Ahmad I, Lazim AM, Amin MCIM (2017) Synthesis and swelling behavior of pH-sensitive semi-IPN superabsorbent hydrogels based on poly(acrylic acid) reinforced with cellulose nanocrystals. Nanomaterials 7:399. https://doi.org/10.3390/nano7110399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Sun JY, Zhao X, Illeperuma WRK, Chaudhuri O, Oh KH, Mooney DJ, Vlassak JJ, Suo Z (2012) Highly stretchable and tough hydrogels. Nature 489:133–136. https://doi.org/10.1038/nature11409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Coradin T, Nassif N, Livage J (2003) Silica–alginate composites for microencapsulation. App Microbio Biotech 61:429–434. https://doi.org/10.1007/s00253-003-1308-5

    Article  CAS  Google Scholar 

  60. Jia Y, Chen J, Liu W, Yin D (2019) Construction of highly stretchable silica/polyacrylamide nanocomposite hydrogels through hydrogen bond strategy. J Poly Res 26(119):1–9. https://doi.org/10.1007/s10965-019-1761-1

    Article  CAS  Google Scholar 

  61. Godiya CB, Cheng X, Li D, Chen Z, Lu X (2019) Carboxymethyl cellulose/polyacrylamide composite hydrogel for cascaded treatment/reuse of heavy metal ions in wastewater. J Hazard Mater 364:28–38. https://doi.org/10.1016/j.jhazmat.2018.09.076

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Khalifa University Gas Processing and Materials Science Research Center, Abu Dhabi, for funding the project (GRC11006).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Priyabrata Pal or Fawzi Banat.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Human or animal rights

Also, the authors have not used any animal studies or human participants' involvement in this study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 8147 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Edathil, A.A., Othman, I., Pal, P. et al. Interpenetrating network nanocomposite hydrogels as efficient adsorbents for the removal of total impurities from industrial lean methyldiethanolamine solution. Polym. Bull. 80, 9913–9939 (2023). https://doi.org/10.1007/s00289-022-04542-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-022-04542-2

Keywords

Navigation