Skip to main content
Log in

The influence of alkyl groups at ortho-position of amino group on the structure and properties of polyimides

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

A series of polyimides (PIs) using four kinds of m-phenylenediamine monomers containing different substituent groups at the ortho-position of the amino group was synthesized. Furthermore, these polyimides with variable rotational freedom of the imide bond and the rigidity of the polyimides molecular chain were used to investigate the influence of these alkyl groups on the structure and properties of PIs. The results of property tests revealed the effects of these substituent groups on the properties of PIs. The glass transition temperatures (Tgs) and tensile strengths of PIs have increased due to the decrease of the rotational freedom of the imide bond and the increased rigidity of the polyimides molecular chain. Due to the weakening of the intermolecular charge-transfer (CT) interactions caused by the substituent groups, the solubility of PIs has been improved. All the PIs with alkyl groups exhibit greater tensile strength and higher Young's modulus because the introduction of alkyl groups can increase the rigidity of the molecular chain. While due to the electron-donating property of the alkyl groups, the intramolecular CT interactions in the PI molecule become stronger making the PIs with alkyl groups exhibit stronger visible light absorption capability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Tapaswi PK, Ha CS (2019) Recent trends on transparent colorless polyimides with balanced thermal and optical properties: design and synthesis. Macromol Chem Phys 220:1800313. https://doi.org/10.1002/macp.201800313

    Article  CAS  Google Scholar 

  2. Hasegawa M, Horie K (2001) Photophysics, photochemistry, and optical properties of polyimides. Prog Polym Sci 26:259–335. https://doi.org/10.1016/S0079-6700(00)00042-3

    Article  CAS  Google Scholar 

  3. Ando S, Matsuura T, Sasaki S (1997) Coloration of aromatic polyimides and electronic properties of their source materials. Polym J 29:69–76. https://doi.org/10.1295/polymj.29.69

    Article  CAS  Google Scholar 

  4. Hasegawa M, Hirano D, Fujii M, Haga M, Takezawa E, Yamaguchi S, Ishikawa A, Kagayama T (2013) Solution-processable colorless polyimides derived from hydrogenated pyromellitic dianhydride with controlled steric structure. J Polym Sci Pol Chem 51:575–592. https://doi.org/10.1002/pola.26407

    Article  CAS  Google Scholar 

  5. Chisca S, Musteata V, Stoica I, Sava I (2013) Effect of the chemical structure of aromatic-cycloaliphatic copolyimide films on their surface morphology, relaxation behavior and dielectric properties. J Polym Res 20:111–122. https://doi.org/10.1007/s10965-013-0111-y

    Article  CAS  Google Scholar 

  6. Liu JG, He MH, Zhou HW, Qian ZG, Wang FS, Yang SY (2002) Organosoluble and 2FUJIAOStransparent polyimides derived from alicyclic dianhydride and aromatic diamines. J Polym Sci Pol Chem 40:110–119. https://doi.org/10.1002/pola.10100

    Article  CAS  Google Scholar 

  7. Hasegawa M, Fujii M, Ishii J, Yamaguchi S (2014) Colorless polyimides derived from 1S,2S,4R,5R-cyclohexanetetracarboxylic dianhydride, self-orientation behavior during solution casting, and their optoelectronic applications. Polymer 55:4693–4708. https://doi.org/10.1016/j.polymer.2014.07.032

    Article  CAS  Google Scholar 

  8. Yu HC, Kumar SV, Song YK, Choi J, Kudo K, Kim JG, Oh SY, Chung CM (2011) Nanoporous thin films of fully alicyclic polyimides. Macromol Res 19:1272–1277. https://doi.org/10.1007/s13233-011-1216-y

    Article  CAS  Google Scholar 

  9. Goto K, Akiike T, Inoue Y, Matsubara M (2003) Polymer design for thermally stable polyimides with low dielectric constant. Macromol Symp 199:321–331. https://doi.org/10.1002/masy.200350927

    Article  CAS  Google Scholar 

  10. Hou CC, Sheng LC, Lin CH, Chen SW (2012) Design and synthesis of unsymmetric phosphinated diamines for high-Tg, transparent polyimides. Polymer 53:1651–1658. https://doi.org/10.1016/j.polymer.2012.02.037

    Article  CAS  Google Scholar 

  11. Huang XH, Huang W, Liu JY, Meng LL, Yan DY (2012) Synthesis of highly soluble and transparent polyimides. Polym Int 61:1503–1509. https://doi.org/10.1002/pi.4235

    Article  CAS  Google Scholar 

  12. Liu C, Pei X, Huang X, Wei C, Sun X (2015) Novel non-coplanar and tertbutyl-substituted polyimides: solubility, optical, thermal and dielectric properties. Chin J Chem 33:277–284. https://doi.org/10.1002/cjoc.201400587

    Article  CAS  Google Scholar 

  13. Zhang Q, Chen G, Zhang S (2007) Synthesis and properties of novel soluble polyimides having a spirobisindane-linked dianhydride unit. Polymer 48:2250–2256. https://doi.org/10.1016/j.polymer.2007.02.061

    Article  CAS  Google Scholar 

  14. Hasegawa M, Ishigami T, Ishii J (2015) Optically transparent aromatic poly(ester imide)s with low coefficients of thermal expansion (1). Self-orientation behavior during solution casting process and substituent effect. Polymer 74:1–15. https://doi.org/10.1016/j.polymer.2015.07.026

    Article  CAS  Google Scholar 

  15. Nam KH, Kim H, Choi HK, Yeo H, Goh M, Yu J, Hahn JR, Han H, Ku BC, You NH (2016) Thermomechanical and optical properties of molecularly controlled polyimides derived from ester derivatives. Polymer 108:502–512. https://doi.org/10.1016/j.polymer.2016.11.062

    Article  CAS  Google Scholar 

  16. Hasegawa M, Watanabe Y, Tsukuda S, Ishii J (2016) Solution-processable colorless polyimides with ultralow coefficients of thermal expansion for optoelectronic applications. Polym Int 65:1063–1073. https://doi.org/10.1002/pi.5152

    Article  CAS  Google Scholar 

  17. Hsu LC, Lee PI, King JS, Jeng JL (2002) Synthesis and characterization of a positive-working, aqueous-base-developable photosensitive polyimide precursor. J Appl Polym Sci 86:352–358. https://doi.org/10.1002/app.10969

    Article  CAS  Google Scholar 

  18. Liu C, Pei X, Mei M, Chou G, Huang X, Wei C (2015) Synthesis and characterization of organosoluble, transparent, and hydrophobic fluorinated polyimides derived from 3,3’-diisopropyl-4,4’-diaminodiphenyl-4’’-trifluoromethyltoluene. High Perform Polym 28:1114–1123. https://doi.org/10.1177/0954008315617230

    Article  CAS  Google Scholar 

  19. Yeo H, Goh M, Ku B, You N (2015) Synthesis and characterization of highly-fluorinated colorless polyimides derived from 4,4′-((perfluoro-[1,1′-biphenyl]-4,4′-diyl)bis(oxy))bis(2,6-dimethyl -aniline) and aromatic dianhydrides. Polymer 76:280–286. https://doi.org/10.1016/j.polymer.2015.09.019

    Article  CAS  Google Scholar 

  20. Zhao XJ, Liu JG, Rui JM, Fan L, Yang SY (2007) Synthesis and characterization of organosoluble polyfluorinated polyimides derived from 3,3’,5,5’-tetrafluor-4,4’-diaminodiphenylmethane and various aromatic dianhydrides. J Appl Polym Sci 103:1442–1449. https://doi.org/10.1002/app.24616

    Article  CAS  Google Scholar 

  21. Langsam M, Burgoyne WF (1993) Effects of diamine monomer structure on the gas permeability of polyimides. I. Bridged diamines. J Polym Sci Pol Chem 31:909–921. https://doi.org/10.1002/pola.1993.080310409

    Article  CAS  Google Scholar 

  22. Wachsman ED, Frank CW (1988) Effect of cure history on the morphology of polyimide: fluorescence spectroscopy as a method for determining the degree of cure. Polymer 29:1191–1197. https://doi.org/10.1016/0032-3861(88)90043-2

    Article  CAS  Google Scholar 

  23. Ding MX (2006) Polyimide: chemistry, relationship between structure and properties and materials. Beijing Science Press. ISBN: 9787030353818

  24. Yi L, Li C, Huang W, Yan D (2016) Soluble and transparent polyimides with high Tg from a new diamine containing tert-butyl and fluorene units. J Polym Sci Pol Chem 54:976–984. https://doi.org/10.1002/pola.27933

    Article  CAS  Google Scholar 

  25. Tang X, Lin G, Liu C et al (2022) Lightweight and tough multilayered composite based on poly (aryl ether nitrile)/carbon fiber cloth for electromagnetic interference shielding. Colloid Surf A. https://doi.org/10.1016/j.colsurfa.2022.129578

    Article  Google Scholar 

  26. Mckittrick PT, Katon JE (1990) Infrared and raman group frequencies of cyclic imides. Appl Spectrosc 44:812–817. https://doi.org/10.1366/0003702904087000

    Article  CAS  Google Scholar 

  27. Singh PK, Sharma K (2018) Molecular dynamics simulation of glass transition behavior of polymer based nanocomposites. J Sci Ind Res India 77(10):592–595

    CAS  Google Scholar 

  28. Liu YW, Zhou ZX, Qu LJ, Chen ZQ, Zhang Y, Liu SW, Chi ZG, Chen XD, Xu JR (2017) Exceptionally thermostable and soluble aromatic polyimides with special characteristics: intrinsic ultralow dielectric constant, static random access memory behaviors, transparency and fluorescence. Mater Chem Front 1:326–337. https://doi.org/10.1039/C6QM00027D

    Article  CAS  Google Scholar 

  29. Li T, Huang H, Wang L, Chen Y (2017) High performance polyimides with good solubility and optical transparency formed by the introduction of alkyl and naphthalene groups into diamine monomers. RSC Adv 7:40996–41003. https://doi.org/10.1039/C7RA07142F

    Article  CAS  Google Scholar 

  30. Liaw DJ, Chang FC, Leung MK, Chou MY (2005) Muellen K. High thermal stability and rigid rod of novel organosoluble polyimides and polyamides based on bulky and noncoplanar naphthalene-biphenyldiamine. Macromolecules 38:4024–4029. https://doi.org/10.1021/ma048559x

    Article  CAS  Google Scholar 

  31. Wang L, Chang P, Cheng CL (2006) Structural effects of pendant groups on thermal and electrical properties of polyimides. J Appl Polym Sci 100:4672–4678. https://doi.org/10.1002/app.22673

    Article  CAS  Google Scholar 

  32. Farmer JB, Lossing FP (1955) Free radicals by mass spectrometry: VII. The ionization potentials of ethyl, isopropyl, and propargyl radicals and the appearance potentials of the radical ions in some derivatives. Can J Chem 33(5):861–869. https://doi.org/10.1139/v55-104

    Article  CAS  Google Scholar 

  33. Ling QD, Liaw DJ, Teo YH, Zhu C, Chan SH, Kang ET, Neoh KG (2007) Polymer memories: bistable electrical switching and device performance. Polymer 48:5182–5201. https://doi.org/10.1016/j.polymer.2007.06.025

    Article  CAS  Google Scholar 

  34. Ling QD, Liaw DJ, Zhu C, Chan D, Kang ET, Neoh KG (2008) Polymer electronic memories: materials, devices and mechanisms. Prog Polym Sci 33:917–978. https://doi.org/10.1016/j.progpolymsci.2008.08.001

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors. The authors are thankful to Dr. Shengpei Su for his help in this work.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xi Wang or Chunwang Yi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Y., Wang, M., Wang, X. et al. The influence of alkyl groups at ortho-position of amino group on the structure and properties of polyimides. Polym. Bull. 80, 9881–9897 (2023). https://doi.org/10.1007/s00289-022-04537-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-022-04537-z

Keywords

Navigation