Skip to main content
Log in

Synthesis, characterization and affinity detection of sulfonated polyimides: confirmation of proton transfer in quantum theory simulations

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Here, two different novel sulfonated polyimides were produced using different monomer ratios. With 2 different molecules of diamine, 3,3′,4,4′-biphenyl tetracarboxylic dianhydride and perylene-3, 4, 9, 10-tetracarboxylic dianhydride in an inert atmosphere at two-stage high temperature and the presence of sulfonic acid, sulfonated polyimides were obtained by imidization. For sulfonated polyimides, proton nuclear magnetic resonance, Fourier transform infrared, solubility tests, the affinity of polymers to solvents, ultraviolet–visible spectroscopy and thermogravimetric analysis/differential thermal analysis characterization were performed. Quantum chemical calculations of synthesized sulfonated polyimides, density functional theory and analysis of atoms in molecules theoretical calculations are presented to learn about various energy properties and to see proton transfer scripts. The thermogravimetric analysis/differential thermal analysis curve showed a second degradation stage at a temperature higher than 400 °C.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. McKeen L (2012) 6 - Polyimides. In: McKeen L (ed) The effect of sterilization on plastics and elastomers, 3rd edn. William Andrew Publishing, Boston

    Google Scholar 

  2. Massey LK (2003) Chapter 33 - polyimide. In: Massey LK (ed) Permeability properties of plastics and elastomers, 2nd edn. William Andrew Publishing, Norwich, NY

    Google Scholar 

  3. Kayvani Fard A, McKay G, Buekenhoudt A, Al Sulaiti H, Motmans F, Khraisheh M, Atieh M (2018) Inorganic membranes: preparation and application for water treatment and desalination. Materials (Basel) 11:74. https://doi.org/10.3390/ma11010074

    Article  CAS  PubMed  Google Scholar 

  4. Lee T, Park SS, Jung Y, Han S, Han D, Kim I, Ha C-S (2009) Preparation and characterization of polyimide/mesoporous silica hybrid nanocomposites based on water-soluble poly(amic acid) ammonium salt. Eur Polym J 45:19–29. https://doi.org/10.1016/j.eurpolymj.2008.09.022

    Article  CAS  Google Scholar 

  5. Volksen W (1994) Condensation polyimides: synthesis, solution behavior, and imidization characteristics. In: Hergenrother PM (ed) High performance polymers. Springer, Berlin Heidelberg, Berlin, Heidelberg

    Google Scholar 

  6. Lee J, Baek S, Kim J, Lee S, Kim J, Han H (2021) Highly soluble fluorinated polyimides synthesized with hydrothermal process towards sustainable green technology. Polymers 13:3824. https://doi.org/10.3390/polym13213824

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Feng X, Liu J (2018). Thermoplastic Polyimide (TPI). In: High Performance Polymers and Their Nanocomposites Hobon, NJ USA, John Wiley PP. 149-219

  8. Deng B, Zhang S, Liu C, Li W, Zhang X, Wei H, Gong C (2018) Synthesis and properties of soluble aromatic polyimides from novel 4,5-diazafluorene-containing dianhydride. RSC Adv 8:194–205. https://doi.org/10.1039/C7RA12101F

    Article  CAS  Google Scholar 

  9. Nunes SP (2008) Organic-inorganic membranes. In: membrane science and technology, vol 13. Elsevier, pp 121–134. https://doi.org/10.1016/S0927-5193(07)13004-7

  10. Weber AZ, Newman Jo (2007) Macroscopic modeling of polymer-electrolyte membranes. Advances in fuel cell. Elsevier. https://doi.org/10.1016/S1752-301X(07)80007-X

    Chapter  Google Scholar 

  11. Li X (2007) Chapter One - Thermodynamic Performance of Fuel Cells and Comparison with Heat Engines. In: Zhao TS, Kreuer KD, Van Nguyen T (eds) Advances in fuel cells, vol 1. Elsevier Science, https://doi.org/10.1016/S1752-301X(07)80006-8

  12. Mahdavi H, Ahmadian-Alam L (2015) 32.Sulfonic acid functionalization of 2-aminoterephthalate metal−organic framework and silica nanoparticles by surface initiated radical polymerization: as proton-conducting solid electrolytes. J Polym Res. https://doi.org/10.1007/s10965-015-0708-4

    Article  Google Scholar 

  13. Hooshyari K, Rezania H, Vatanpour V, Salarizadeh P, Askari MB, Beydaghi H, Enhessari M (2020) High temperature membranes based on PBI/sulfonated polyimide and doped-perovskite nanoparticles for PEM fuel cells. J Membr Sci 612:118436. https://doi.org/10.1016/j.memsci.2020.118436

    Article  CAS  Google Scholar 

  14. Akbarian-Feizi L, Mehdipour-Ataei S, Yeganeh H (2010) Survey of sulfonated polyimide membrane as a good candidate for nafion substitution in fuel cell. Int J Hydrog Energy 35:9385–9397. https://doi.org/10.1016/j.ijhydene.2010.03.072

    Article  CAS  Google Scholar 

  15. Lee CH, Park CH, Lee YM (2008) Sulfonated polyimide membranes grafted with sulfoalkylated side chains for proton exchange membrane fuel cell (PEMFC) applications. J Membr Sci 313:199–206. https://doi.org/10.1016/j.memsci.2008.01.004

    Article  CAS  Google Scholar 

  16. Ryu T, Sutradhar SC, Ahmed F, Choi K, Yang H, Yoon S, Lee S, Kim W (2017) Synthesis and characterization of sulfonated mutiphenyl conjugated polyimide for PEMFC. J Ind Eng Chem 49:99–104. https://doi.org/10.1016/j.jiec.2017.01.013

    Article  CAS  Google Scholar 

  17. Wang L, Yi BL, Zhang HM, Liu YH, Xing DM, Shao ZG, Cai YH (2007) Sulfonated polyimide/PTFE reinforced membrane for PEMFCs. J Power Sour 167:47–52. https://doi.org/10.1016/j.jpowsour.2006.12.111

    Article  CAS  Google Scholar 

  18. Nguyen TH, Wang C, Wang X (2009) Pore-filling membrane for direct methanol fuel cells based on sulfonated poly(styrene-ran-ethylene) and porous polyimide matrix. J Membr Sci 342:208–214. https://doi.org/10.1016/J.MEMSCI.2009.06.042

    Article  CAS  Google Scholar 

  19. Dudowicz J, Freed KF, Douglas JF (2015) Theory of competitive solvation of polymers by two solvents and entropy-enthalpy compensation in the solvation free energy upon dilution with the second solvent. J Chem Phys 142:214906. https://doi.org/10.1063/1.4921373

    Article  CAS  PubMed  Google Scholar 

  20. Shireen Z, Babu SB (2018) Cage dynamics leads to double relaxation of the intermediate scattering function in a binary colloidal system. Soft Matter 14:9271–9281. https://doi.org/10.1039/C8SM01474D

    Article  CAS  PubMed  Google Scholar 

  21. Hansen CM (2004) 50 Years with solubility parameters—past and future. Prog Org Coat 51:77–84. https://doi.org/10.1016/j.porgcoat.2004.05.004

    Article  CAS  Google Scholar 

  22. Hildebrand JH, Scott RL (1964) The solubility of nonelectrolytes. Dover Publications

    Google Scholar 

  23. Cousins KR (2005) ChemDraw Ultra 9.0. cambridgesoft, 100 cambridgepark Drive, Cambridge, MA 02140. www. cambridgesoft.com. see web site for pricing options. J Am Chem Soc 127:4115–4116. https://doi.org/10.1021/ja0410237

    Article  CAS  Google Scholar 

  24. Frisch M, Trucks G, Schlegel H, Scuseria G, Robb M, Cheeseman J, Scalmani G, Barone V, Petersson G, Nakatsuji H (2016) Gaussian 16. Gaussian, Inc. Wallingford, CT, E.U.A.

  25. Keith T (2011) AIMAll (standard mode). Version 11(02):27

    Google Scholar 

  26. Khalid N, Bibi A, Akhtar K, Mustafa K, Khan M, Saeed N (2019) New Blue Light Emissive polyazomethine(S) containing Bromo-triphenyl units: synthesis and photophysics. Polym-Plast Tech Mat 58:419–426. https://doi.org/10.1080/03602559.2018.1471719

    Article  CAS  Google Scholar 

  27. Yildiko Ü, Türkan F, Tanriverdi AA, Ata AC, Atalar MN, Cakmak İ (2021) Synthesis, enzymes inhibitory properties and characterization of 2- (bis (4-aminophenyl) methyl) butan-1-ol compound: quantum simulations, and in-silico molecular docking studies. J Indian Chem Soc 98:100206. https://doi.org/10.1016/j.jics.2021.100206

    Article  CAS  Google Scholar 

  28. Utracki LA (2014) 2_Characterization methods for high temperature polymer blends. high temperature polymer blends. Elsevier, pp 14–69. https://doi.org/10.1533/9780857099013.14

    Chapter  Google Scholar 

  29. CagriAta A, Yildiko Ü, Cakmak İ, Tanriverdi AA (2021) Synthesis and characterization of polyvinyl alcohol-g-polystyrene copolymers via MADIX polymerization technique. Iran Polym J 30:885–895. https://doi.org/10.1007/s13726-021-00940-x

    Article  CAS  Google Scholar 

  30. Yildiko U, Ata AC, Cakmak İ, Tanriverdi AA (2021) The polyethylene glycol xanthate-mediated synthesis of block copolymers via novel MADIX agents containing azo initiator: effect of PEG chain length on molecular properties. Polym Bull. https://doi.org/10.1007/s00289-021-03813-8

    Article  Google Scholar 

  31. Utracki LA (2014) Characterization of high temperature polymer blends for specific applications: fuel cells and aerospace applications. high temperature polymer blends. Elsevier, pp 70–129. https://doi.org/10.1533/9780857099013.70

    Chapter  Google Scholar 

  32. Sahoo S, Chakraborti C, Behera P, Mishra S (2012) FTIR and raman spectroscopic investigations of a Norfloxacin/Carbopol934 polymeric suspension. J Young Pharm 4:138–145. https://doi.org/10.4103/0975-1483.100017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Yİldİko Ü, Ata AÇ, Tanriverdİ AA, Çakmak İ, (2021) Investigation of novel diethanolamine dithiocarbamate agent for RAFT polymerization: DFT computational study of the oligomer molecules. Bull Mater Sci 44:186. https://doi.org/10.1007/s12034-021-02450-1

    Article  CAS  Google Scholar 

  34. Zhang D, Seong JG, Lee WH, Ando S, Wan Y, Lee YM, Zhuang Y (2020) Effects of sulfonate incorporation and structural isomerism on physical and gas transport properties of soluble sulfonated polyimides. Polymer 191:122263. https://doi.org/10.1016/j.polymer.2020.122263

    Article  CAS  Google Scholar 

  35. Yildiko U, Tanriverdi AA (2021) Synthesis and characterization of pyromellitic dianhydride based sulfonated polyimide: survey of structure properties with DFT and QTAIM. J Polym Res 29:19. https://doi.org/10.1007/s10965-021-02872-9

    Article  CAS  Google Scholar 

  36. Xu X, Wang J, Dong J, Li H-B, Zhang Q, Zhao X (2020) Ionic polyimide membranes containing Tröger’s base: synthesis, microstructure and potential application in CO2 separation. J Membr Sci 602:117967. https://doi.org/10.1016/j.memsci.2020.117967

    Article  CAS  Google Scholar 

  37. Chiriac A-P, Damaceanu M-D (2021) A novel approach towards crown-ether modified polyimides with affinity for alkali metal ions recognition. J Mol Liq 322:114929. https://doi.org/10.1016/j.molliq.2020.114929

    Article  CAS  Google Scholar 

  38. Niknezhad S, Jana SC (2020) Bicomponent nanofibers from core–shell nozzle in gas jet spinning process. J Appl Polym Sci 137:48901. https://doi.org/10.1002/app.48901

    Article  CAS  Google Scholar 

  39. Van Krevelen DW, Te Nijenhuis K (2009) Cohesive properties and solubility. Properties of polymers. Elsevier. https://doi.org/10.1016/B978-0-08-054819-7.00007-8

    Chapter  Google Scholar 

  40. Stefanis E, Panayiotou CJIjop, (2012) A new expanded solubility parameter approach. Int J Pharm 426(1–2):29–43. https://doi.org/10.1016/j.ijpharm.2012.01.001

    Article  CAS  PubMed  Google Scholar 

  41. Hansen CM (2007) Hansen solubility parameters: a user’s handbook. CRC Press

    Book  Google Scholar 

  42. Mark JE (2009) Polymer data handbook. Oxford University Press

    Google Scholar 

  43. Antosiewicz JM, Shugar D (2016) UV-Vis spectroscopy of tyrosine side-groups in studies of protein structure. Part 2: selected applications. Biophys Rev 8:163–177. https://doi.org/10.1007/s12551-016-0197-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Dokládalová L, Bureš F, Kuznik W, Kityk IV, Wojciechowski A, Mikysek T, Almonasy N, Ramaiyan M, Padělková Z, Kulhánek J, Ludwig M (2014) Dicyanobenzene and dicyanopyrazine derived X-shaped charge-transfer chromophores: comparative and structure–property relationship study. Org Biomol Chem 12:5517–5527. https://doi.org/10.1039/C4OB00901K

    Article  PubMed  Google Scholar 

  45. Abu-Orabi FM, Kailani MH, Sweileh BA, Mustafa MY, Al-Hussein MJPB (2017) Sulfonated polyimide copolymers based on 4, 4′-diaminostilbene-2, 2′-disulfonic acid and 3, 5, 3′, 5′-tetramethylbenzidine with enhanced solubility. Polym Bull 74:895–909. https://doi.org/10.1007/s00289-016-1752-x

    Article  CAS  Google Scholar 

  46. Lee C, Sundar S, Kwon J, Han H (2004) Structure–property correlations of sulfonated polyimides. II. effect of substituent groups on membrane properties. J Polym Sci A Polym Chem 42:3621–3630. https://doi.org/10.1002/pola.20215

    Article  CAS  Google Scholar 

  47. Yin Y, Du Q, Qin Y, Zhou Y, Okamoto K-i (2011) Sulfonated polyimides with flexible aliphatic side chains for polymer electrolyte fuel cells. J Membr Sci 367:211–219. https://doi.org/10.1016/j.memsci.2010.10.054

    Article  CAS  Google Scholar 

  48. Rikukawa M, Sanui KJPiPS, (2000) Proton-conducting polymer electrolyte membranes based on hydrocarbon polymers. Prog Polym Sci 25:1463–1502. https://doi.org/10.1016/S0079-6700(00)00032-0

    Article  CAS  Google Scholar 

  49. Genies C, Mercier R, Sillion B, Cornet N, Gebel G, Pineri M (2001) Soluble sulfonated naphthalenic polyimides as materials for proton exchange membranes. Polymer 42:359–373. https://doi.org/10.1016/S0032-3861(00)00384-0

    Article  CAS  Google Scholar 

  50. Cai J, Ma L, Niu H, Zhao P, Lian Y, Wang W (2013) Near infrared electrochromic naphthalene-based polyimides containing triarylamine: Synthesis and electrochemical properties. Electrochim Acta 112:59–67. https://doi.org/10.1016/j.electacta.2013.08.160

    Article  CAS  Google Scholar 

  51. López-Chávez E, Peña-Castañeda YA, de la Portilla-Maldonado LC, Guzmán-Pantoja J, Martínez-Magadán JM, Oviedo-Roa R, de Landa C-A, Cruz-Torres A (2014) Role of sulfonation in the stability, reactivity, and selectivity of poly(ether imide) used to develop ion exchange membranes: DFT study with application to fuel cells. J Mol Model 20:2325. https://doi.org/10.1007/s00894-014-2325-2

    Article  CAS  PubMed  Google Scholar 

  52. Yildiko U, Tanriverdi AA (2022) A novel sulfonated aromatic polyimide synthesis and characterization: Energy calculations. BKCS n/a, Wiley Online Library, QTAIM simulation study of the hydrated structure of one unit. https://doi.org/10.1002/bkcs.12521

    Book  Google Scholar 

  53. Özdemir N, Eren B, Dinçer M, Bekdemir Y (2010) Experimental and ab initio computational studies on 4-(1H-benzo[d]imidazol-2-yl)-N, N-dimethylaniline. Mol Phys 108:13–24. https://doi.org/10.1080/00268970903476688

    Article  CAS  Google Scholar 

  54. Buvaneswari M, Santhakumari R, Usha C, Jayasree R, Sagadevan S (2021) Synthesis, growth, structural, spectroscopic, optical, thermal, DFT, HOMO–LUMO, MEP, NBO analysis and thermodynamic properties of vanillin isonicotinic hydrazide single crystal. J Mol Struct 1243:130856. https://doi.org/10.1016/j.molstruc.2021.130856

    Article  CAS  Google Scholar 

  55. Doneux T, Tielens F, Geerlings P, Buess-Herman C (2006) Experimental and density functional theory study of the vibrational properties of 2-Mercaptobenzimidazole in interaction with Gold. J Phys Chem A 110:11346–11352. https://doi.org/10.1021/jp061582v

    Article  CAS  PubMed  Google Scholar 

  56. Włodarska M, Mossety-Leszczak B (2021) DFT studies of selected epoxies with mesogenic Units-impact of molecular structure on electro-optical response. Int J Mol Sci 22:3424. https://doi.org/10.3390/ijms22073424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Kargar H, Fallah-Mehrjardi M, Behjatmanesh-Ardakani R, Munawar KS, Ashfaq M, Tahir MN (2022) Diverse coordination of isoniazid hydrazone Schiff base ligand towards iron(III): synthesis, characterization, SC-XRD, HSA, QTAIM, MEP, NCI, NBO and DFT study. J Mol Struct 1250:131691. https://doi.org/10.1016/j.molstruc.2021.131691

    Article  CAS  Google Scholar 

  58. Raissi H, Khoshbin Z, Mollania F (2014) The analysis of structural and electronic properties for assessment of intramolecular hydrogen bond (IMHB) interaction: a comprehensive study into the effect of substitution on intramolecular hydrogen bond of 4-nitropyridine-3-thiol in ground and electronic excited state. Struct Chem 25:515–538. https://doi.org/10.1007/s11224-013-0314-1

    Article  CAS  Google Scholar 

  59. Molavian MR, Abdolmaleki A, Eskandari K (2016) Theoretical investigation of proton-transfer in different membranes for PEMFC applications in low humidity conditions. Comput Mater Sci 122:126–138. https://doi.org/10.1016/j.commatsci.2016.05.003

    Article  CAS  Google Scholar 

  60. Gupta VP (2016) Topological analysis of electron density quantum theory of atoms in molecules. Princ Appl Quantum Chem. https://doi.org/10.1016/B978-0-12-803478-1.00011-X

    Article  Google Scholar 

  61. Abdolmaleki A, Eskandari K, Molavian MRJP (2016) Sulfonated or phosphonated membranes? DFT investigation of proton exchange in poly (oxadiazole) membranes. Polymer 87:181–193. https://doi.org/10.1016/j.polymer.2016.02.011

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Umit Yildiko.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest in the work reported in this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 555 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tanriverdi, A.A., Yildiko, U., Tekes, A.T. et al. Synthesis, characterization and affinity detection of sulfonated polyimides: confirmation of proton transfer in quantum theory simulations. Polym. Bull. 80, 9853–9880 (2023). https://doi.org/10.1007/s00289-022-04536-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-022-04536-0

Keywords

Navigation