Skip to main content
Log in

Synthesis of bis(thiophen-2-yl)benzothiadiazole scaffold donor-acceptor polymers: studies of polymerization, electrical, optical, and photovoltaic properties

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Facile and efficient synthesis of conjugated donor-acceptor polymers via direct C-H arylation polymerization has received significant interest in organic electronic applications. We report here a one-pot synthesis of a series of bis(thiophen-2-yl)benzothiadiazole-based donor-acceptor polymers P1-4 via direct C-H arylation polymerization in excellent yield. Two donor moieties [3-hexylthiophene and 1,4-bis(dodecyloxy)benzene], and one acceptor unit 4,7-bis(thiophen-2-yl)benzo[c][1,2,5]thiadiazole were used for direct C-H arylation polymerization. The prowess of the methodology was applied to synthesis of polymer by adding one donor unit followed by a second donor unit after the due course. The resulting polymers are soluble and characterized. Optical and electrochemical properties were carried out by UV-Vis-NIR and cyclic voltammetry, respectively. A temperature-dependent absorption of the polymer films blended with PC71BM was studied for photovoltaic application. Devices were fabricated by solution-processable deposition of active layer and a PCE of 3.82% was achieved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Scheme 2
Scheme 3
Scheme 4
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Pankow RM, Thompson BC (2020) The development of conjugated polymers as the cornerstone of organic electronics. Polymer 207:122874

    CAS  Google Scholar 

  2. Dudnik AS, Aldrich TJ, Eastham ND, Chang RPH, Facchetti A, Marks TJ (2016) Tin-Free direct C-H arylation polymerization for high photovoltaic efficiency conjugated copolymers. J Am Chem Soc 138:15699–15709

    CAS  PubMed  Google Scholar 

  3. Lu L, Zheng T, Wu Q, Schneider AM, Zhao D, Yu L (2015) Recent advances in bulk heterojunction polymer solar cells. Chem Rev 115:12666

    CAS  PubMed  Google Scholar 

  4. Truong NTT, Nguyen LT, Mai HLT, Mai HLT, Doan BK, Tran DH, Truong KT, Nguyen VQ, Nguyen LTT, Hoang MH, Pham TV, Nguyen VM, Huynh TM, Doan TCD, Nguyen HT (2020) Phenothiazine derivatives, diketopyrrolopyrrole-based conjugated polymers: synthesis, optical and organic field effect transistor properties. J Polym Res 27:223

    CAS  Google Scholar 

  5. Zhang L, Liu C, Zhang J, Li X, Cheng C, Tian Y, Jen AKY, Xu B (2018) Intensive exposure of functional rings of a polymeric hole-transporting material enables efficient perovskite solar cells. Adv Mater 30:1804028

    Google Scholar 

  6. Hou P, Oechsle P, Paradies KD, J, (2020) Palladium-catalyzepolycondensation for the synthesisof poly(Aryl)sulfides. Macromol Rapid Commun 41:2000067

    CAS  Google Scholar 

  7. Patra A, Kumar R, Chand S (2014) Selenium-containing π-conjugated polymers for organic solar cells. Isr J Chem 54:621–641

    CAS  Google Scholar 

  8. Zhao C, Guo Y, Zhang Y, Yan N, You S, Li W (2019) Diketopyrrolopyrrole-based conjugated materials for non-fullerene organic solar cells. J Mater Chem A 7:10174

    CAS  Google Scholar 

  9. Heinrichová P, Pospíšil J, Stříteský S, Vala M, Weiter M, Toman P, Rais D, Pfleger J, Vondráček M, Šimek D, Fekete L, Horáková P, Dokládalová L, Kubáč L, Kratochvílová I (2019) Diketopyrrolopyrrole-based organic solar cells functionality: the role of orbital energy and crystallinity. J Phys Chem C 123(18):11447–11463. https://doi.org/10.1021/acs.jpcc.9b01328

    Article  CAS  Google Scholar 

  10. Fusco S, Barra M, Bonomo M, Cassinese A, Centore R, Chiarella F, Senneca F, Carella A (2021) Novel DPP derivatives functionalized with auxiliary electron-acceptor groups and characterized by narrow bandgap and ambipolar charge transport properties. Dyes Pigm 186:109026

    CAS  Google Scholar 

  11. Holliday S, Ashraf RS, Wadsworth A, Baran D, Yousaf SA, Nielsen CB, Tan CH, Dimitrov SD, Shang Z, Gasparini N, Alamoudi M, Laquai F, Brabec CJ, Salleo A, Durrant JR, McCulloch I (2016) High-efficiency and air-stable P3HT-based polymer solar cells with a new non-fullerene acceptor. Nat Commun 7:11585

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Farinhas J, Oliveira R, Ferreira Q, Morgado J, Charas A (2017) Enhanced efficiency of PTB7: PC61BM organic solar cells by adding a low efficient polymer donor. Int J Photoenergy 2017:4501758

    Google Scholar 

  13. Yadav P, Patra A (2020) Recent advances in poly(3,4-ethylenedioxyselenophene) and related polymers. Polym Chem 11:7275–7292

    CAS  Google Scholar 

  14. Le DT, Truong NT, Luu TH, Nguyen LT, Hoang MH, Huynh HPK, Cu ST, Nguyen QT, Nguyen HT (2022) Donor – acceptor and donor – donor alternating conjugated polymers based on dithieno[3,2-b:2’,3’-d]pyrrole: synthesis, optical properties and organic solar cells applications. J Polym Res 29:111

    CAS  Google Scholar 

  15. Amiel DBA, Ck K, Gidron O (2021) Oligofuran-benzothiadiazole Co-oligomers: synthesis. Optoelectron Proper React, Org Mater 03:303–308

    Google Scholar 

  16. Tomar M, Ashar AZ, Narayan KS, Müllen K, Jacob J (2016) Tuning the HOMO energy levels in quinoline and biquinoline based donor-acceptor polymers. J Polym Res 23:50

    Google Scholar 

  17. Singhal S, Patra A (2020) Benzothiadiazole bridged EDOT based donor–acceptor polymers with tunable optical, electrochemical, morphological and electrochromic performance: effects of solvents and electrolytes. Phys Chem Chem Phys 22:14527–14536

    CAS  PubMed  Google Scholar 

  18. Patra A, Agrawal V, Bhargav R, Shahjad BD, Chand S, Sheynin Y, Bendikov M (2015) Metal free conducting PEDOS, PEDOT, and their analogues via an unusual bromine-catalyzed polymerization. Macromolecules 48:8760–8764

    CAS  Google Scholar 

  19. Gupta S, Patra A (2020) Facile polymerization method for poly(3,4-ethylenedioxythiophene) and related polymers using iodine vapour. New J Chem 44:6883–6888

    CAS  Google Scholar 

  20. Bhardwaj D, Shahjad GS, Yadav P, Bhargav R, Patra A (2017) All Conjugated Poly(3-hexylthiophene)-block-poly (hexyl-3,4-ethylenedioxythiophene) Copolymers. ChemistrySelect 2:9557–9562

    CAS  Google Scholar 

  21. Bura T, Blaskovits JT, Leclerc M (2016) Direct (hetero)arylation polymerization: toward defect-free conjugated polymers. J Am Chem Soc 138:10056

    CAS  PubMed  Google Scholar 

  22. Mercier LG, Leclerc M (2013) Direct (Hetero)Arylation: a new tool for polymer chemists. Acc Chem Res 46:1597

    CAS  PubMed  Google Scholar 

  23. Suraru SL, Lee JA, Luscombe CK (2016) C-H arylation in the synthesis of π-conjugated polymers. ACS Macro Lett 5:724

    CAS  PubMed  Google Scholar 

  24. Leclerc M, Brassard S, Beaupré S (2020) Direct (hetero) arylation polymerization: toward defect-free conjugated polymers. Polym J 52:13–20

    CAS  Google Scholar 

  25. Rao GH, Rana PJS, Islam A, Singh SP (2018) Synthesis of multichromophoric asymmetrical squaraine sensitizer via C-H arylation for see-through photovoltaic. ACS Appl Energy Mater 1:4786–4793

    CAS  Google Scholar 

  26. Liu SY, Fu WF, Xu JQ, Fan CC, Jiang H, Shi M, Li HY, Chen HZ (2013) A direct arylation-derived DPP-based small molecule for solution-processed organic solar cells. Nanotechnology 25:014006

    PubMed  Google Scholar 

  27. Liu SY, Shi MM, Huang JC, Jin ZN, Hu XL, Pan JY, Li HY, Jen AKY, Chen HZ (2013) C-H activation: making diketopyrrolopyrrole derivatives easily accessible. J Mater Chem A 1:2795–2805

    CAS  Google Scholar 

  28. Liu SY, Wang DG, Zhong AG, Wen HR (2018) One-step rapid synthesis of π-conjugated large oligomers via C-H activation coupling. Org Chem Front 5:653–661

    CAS  Google Scholar 

  29. Huang WY, Shen ZQ, Cheng JZ, Liu LL, Yang K, Chen X, Wen HR, Liu SY (2019) C-H activation derived CPPs for photocatalytic hydrogen production excellently accelerated by a DMF cosolvent. J Mater Chem A 7:24222–24230

    CAS  Google Scholar 

  30. Govindan V, Wu CG (2017) Facile synthesis of low band-gap DPP–EDOT containing small molecules for solar cell applications. RSC Adv 7:28788–28796

    CAS  Google Scholar 

  31. Wang S, Hu J, Wang J, Huang W (2019) Direct CH arylation for small molecules composed of diketopyrrolopyrrole and benzothiadiazole as organic semiconductor materials. Synth Met 250:94–98

    CAS  Google Scholar 

  32. Wang S, Yang J, Broch K, Novoák J, Cao X, Shaw J, Tao Y, Hu Y, Huang W (2016) Direct C-H arylation for various Ar-cored diketopyrrolopyrrole containing small molecules in solution-processed field-effect transistor. RSC Adv 6:57163–57173

    CAS  Google Scholar 

  33. Nitti A, Debattista F, Abbondanza L, Bianchi G, Po R, Pasini D (2017) Donor–acceptor conjugated copolymers incorporating tetrafluorobenzene as the π-electron deficient unit. J Polym Sci Part A: Polym Chem 55:1601–1610

    CAS  Google Scholar 

  34. Chang SW, Waters H, Kettle J, Kuo ZR, Li CH, Yu CY, Horie M (2012) Pd-catalysed direct arylation polymerisation for synthesis of low-bandgap conjugated polymers and photovoltaic performance. Macromol rapid commun 33:1927–1932

    CAS  PubMed  Google Scholar 

  35. Choi SJ, Kuwabara J, Kanbara T (2013) Microwave-assisted polycondensation via direct arylation of 3, 4-ethylenedioxythiophene with 9, 9-dioctyl-2, 7-dibromofluorene. ACS Sustain Chem Eng 1:878–882

    CAS  Google Scholar 

  36. Chen S, Lee KC, Zhang ZG, Kim DS, Li Y, Yang C (2016) An indacenodithiophene–quinoxaline polymer prepared by direct arylation polymerization for organic photovoltaics. Macromolecules 49:527–536

    CAS  Google Scholar 

  37. Estrada LA, Deininger JJ, Kamenov GD, Reynolds JR (2013) Direct (hetero) arylation polymerization: an effective route to 3, 4-propylenedioxythiophene-based polymers with low residual metal content. ACS Macro Lett 2:869–873

    CAS  PubMed  Google Scholar 

  38. Nitti A, Signorile M, Boiocchi M, Bianchi G, Po R, Pasini D (2016) Conjugated thiophene-fused isatin dyes through intramolecular direct arylation. J Org Chem 81:11035

    CAS  PubMed  Google Scholar 

  39. Nitti A, Bianchi G, Po R, Swager TM, Pasini D (2017) Domino direct arylation and cross-aldol for rapid construction of extended polycyclic π-scaffolds. J Am Chem Soc 139:8788

    CAS  PubMed  Google Scholar 

  40. Areephong J, Hendsbee AD, Welch GC (2015) Facile synthesis of unsymmetrical and π-extended furan-diketopyrrolopyrrole derivatives through C-H direct (hetero) arylation using a heterogeneous catalyst system. New J Chem 39:6714

    CAS  Google Scholar 

  41. Matsidik R, Martin J, Schmidt S, Obermayer LF, Nübling F, Komber H, Fazzi D, Sommer M (2015) C-H arylation of unsubstituted furan and thiophene with acceptor bromides: access to donor–acceptor–donor-type building blocks for organic electronics. J Org Chem 80(2):980

    CAS  PubMed  Google Scholar 

  42. Hendsbee AD, Li Y (2018) Performance comparisons of polymer semiconductors synthesized by direct (Hetero) arylation Polymerization (DHAP) and conventional methods for organic thin film transistors and organic photovoltaics. Molecules 23:1255

    PubMed  PubMed Central  Google Scholar 

  43. Shahjad BR, Bhardwaj D, Mishra A, Patra A (2017) Synthesis and characterization of benzodithiophene-chalcogenophene based copolymers: a comparative study of optoelectronic properties and photovoltaic applications. Macromol Chem Phys 218:1700038

    Google Scholar 

  44. Mishra A, Gupta S, Patra A (2021) Synthesis and properties of 3,4-dioxythiophene and 1,4-dialkoxybenzene based copolymers via direct C H arylation: dopant-free hole transport material for perovskite solar cells. J Polym Sci 60:975–984

    Google Scholar 

  45. Naqvi S, Chaudhary N, Singhal S, Yadav P, Patra A (2021) Hole transport materials by direct C-H arylation for organic solar cells: effect of structure and conjugation on electrical, optical and computational properties. ChemistrySelect 6:131–139

    CAS  Google Scholar 

  46. Naqvi S, Yadav P, Pahari P, Patra A (2021) Synthesis and properties of 3,4-dioxythiophene and1,4-dialkoxybenzene based copolymers via direct C-H arylation: dopant-free hole transport materialfor perovskite solar cells. J Polym Res 28:250

    CAS  Google Scholar 

  47. Cong S, Chen J, Wang L, Lan L, Wang Y, Dai H, Liao H, Zhou Y, Yu Y, Duan J, Li Z (2022) Donor functionalization tuning the N-type performance of Donor-acceptor copolymers for Aqueous-based electrochemical devices. Adv Funct Mater 2022:2201821

    Google Scholar 

  48. Singhal S, Yadav P, Naqvi S, Gupta S, Patra A (2019) Donor–acceptor–donor copolymers with 3, 4-ethylenedioxythiophene moiety: electropolymerization and effect on optoelectronic and electrochromic properties. ACS Omega 4:3484–3492

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Chaudhary N, Kesari JP, Chaudhary R, Patra A (2016) Low band gap polymeric solar cells using solution-processable copper iodide as hole transporting layer. Opt Mater 58:116–120

    CAS  Google Scholar 

  50. Chaudhary N, Chaudhary R, Kesari JP, Patra A (2017) An eco-friendly and inexpensive solvent for solution processable CuSCN as a hole transporting layer in organic solar cells. Opt Mater 69:367–371

    CAS  Google Scholar 

Download references

Acknowledgements

A. M. acknowledges Council of Scientific & Industrial Research (CSIR), New Delhi, India, for her fellowship. This work is financially supported by Department of Science & Technology (DST), New Delhi, India and CSIR-National Physical Laboratory, New Delhi, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asit Patra.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 901 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mishra, A., Gupta, S. & Patra, A. Synthesis of bis(thiophen-2-yl)benzothiadiazole scaffold donor-acceptor polymers: studies of polymerization, electrical, optical, and photovoltaic properties. Polym. Bull. 80, 10015–10029 (2023). https://doi.org/10.1007/s00289-022-04535-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-022-04535-1

Keywords

Navigation