Skip to main content

Advertisement

Log in

Novel coating films containing micronutrients for controlled-release urea fertilizer: release mechanisms and kinetics study

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Alkyd coatings incorporated with different types of micronutrients were successfully prepared and coated on granular urea. Three sets of micronutrients, Zn(NO3)2·6H2O and borax, ZnO and borax, and ZnAl-layered double hydroxide, were studied. The water solubility of micronutrients plays an important role to produce different pore sizes and control the release rate of macro- and micronutrients. The coated urea granules were characterized by using FE-SEM technique, and micronutrient distribution on coating films was performed using energy-dispersive X-ray spectroscopy. Zn, B, and nitrogen releases were evaluated in DI water according to the ISO 21263. The nutrient release kinetics was determined by comparing the data with zero-order, first-order, Higuchi (HG), Hixson–Crowell (HC), and Korsmeyer–Peppas (KP) kinetic models. The diffusion release of Zn micronutrient showed the best fit with KP model, and the diffusion release of boron (B) micronutrient was consistent with HG model. The release characteristics of the nitrogen from urea core through coating films could be best described by the KP model. These coating films are the enhancement of controlled-release fertilizers to reduce the environmental implications imposed by excessive use of fertilizers for a long-term period.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Yang Y, Tong Z, Geng Y, Li Y, Zhang M (2013) Biobased polymer composites derived from corn stover and feather meals as double-coating materials for controlled-release and water-retention urea fertilizers. J Agric Food Chem 61:8166–8174. https://doi.org/10.1021/jf402519t

    Article  CAS  PubMed  Google Scholar 

  2. Hirel B, Tétu T, Lea PJ, Dubois F (2011) Improving nitrogen use efficiency in crops for sustainable agriculture. Sustainability 3:1452–1485. https://doi.org/10.3390/su3091452

    Article  CAS  Google Scholar 

  3. Schjørring JK (1986) Nitrate and ammonium absorption by plants growing at a sufficient or insufficient level of phosphorus in nutrient solutions. Plant Soil 91:313–318. https://doi.org/10.1007/BF02198114

    Article  Google Scholar 

  4. Ravishankara AR, Daniel JS, Portmann RW (1979) Nitrous oxide (N2O): the dominant ozone-depleting substance emitted in the 21st century. Science 326:123–125. https://doi.org/10.1126/science.1176985

    Article  CAS  Google Scholar 

  5. Savci S (2012) Investigation of effect of chemical fertilizers on environment. APCBEE Proc 1:287–292. https://doi.org/10.1016/j.apcbee.2012.03.047

    Article  CAS  Google Scholar 

  6. Cheng L, Ye Z, Cheng S, Guo X (2021) Agricultural ammonia emissions and its impact on PM2.5 concentrations in the Beijing–Tianjin–Hebei region from,2000 to 2018. Environ Pollut 291:118162. https://doi.org/10.1016/j.envpol.2021.118162

    Article  CAS  PubMed  Google Scholar 

  7. Wyer KE, Kelleghan DB, Blanes-Vidal V, Schauberger G, Curran TP (2022) Ammonia emissions from agriculture and their contribution to fine particulate matter: a review of implications for human health. J Environ Manag 323:116285. https://doi.org/10.1016/j.jenvman.2022.116285

    Article  CAS  Google Scholar 

  8. Katan MB (2009) Nitrate in foods: harmful or healthy? Am J Clin Nutr 90:11–12. https://doi.org/10.3945/ajcn.2009.28014

    Article  CAS  PubMed  Google Scholar 

  9. Bouis HE, Saltzman A (2017) Improving nutrition through biofortification: a review of evidence from harvestplus, 2003 through 2016. Glob Food Secur 12:49–58. https://doi.org/10.1016/j.gfs.2017.01.009

    Article  Google Scholar 

  10. Levenson CW, Morris D (2011) Zinc and neurogenesis: making new neurons from development to adulthood. Adv Nutr 2:96–100. https://doi.org/10.3945/an.110.000174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. US Environmental Protection Agency Clean Energy (2014). http://www.epa.gov/cleanenergy/energy-resources/refs.html. Accessed February 23 2022

  12. Syakila A, Kroeze C (2011) The global nitrous oxide budget revisited. Greenh Gas Meas Manag 1:17–26. https://doi.org/10.3763/ghgmm.2010.0007

    Article  CAS  Google Scholar 

  13. Pereira EI, da Cruz CCT, Solomon A, Le A, Cavigelli MA, Ribeiro C (2015) Novel slow-release nanocomposite nitrogen fertilizers: the impact of polymers on nanocomposite properties and function. Ind Eng Chem Res 54:3717–3725. https://doi.org/10.1021/acs.iecr.5b00176

    Article  CAS  Google Scholar 

  14. Ramírez F, González V, Crespo M, Meier D, Faix O, Zúñiga V (1997) Ammoxidized kraft lignin as a slow-release fertilizer tested on Sorghum vulgare. Bioresour Technol 61:43–46. https://doi.org/10.1016/S0960-8524(97)84697-4

    Article  Google Scholar 

  15. Paerl HW, Havens KE, Xu H, Zhu G, McCarthy MJ, Newell SE, Scott JT, Hall NS, Otten TG, Qin B (2020) Mitigating eutrophication and toxic cyanobacterial blooms in large lakes:the evolution of a dual nutrient (N and P) reduction paradigm. Hydrobiologia 847:4359–4375. https://doi.org/10.1007/s10750-019-04087-y

    Article  CAS  Google Scholar 

  16. Camacho-Cristóbal JJ, Rexach J, González-Fontes A (2008) Boron in plants: deficiency and toxicity. J Integr Plant Biol 50:1247–1255. https://doi.org/10.1111/j.1744-7909.2008.00742.x

    Article  CAS  PubMed  Google Scholar 

  17. Naz MY, Sulaiman SA (2016) Slow release coating remedy for nitrogen loss from conventional urea: a review. J Control Release 225:109–120. https://doi.org/10.1016/j.jconrel.2016.01.037

    Article  CAS  PubMed  Google Scholar 

  18. Fengdong Ma Zhang González Diez Cartes Monreal Navia GYMAMCPCR (2019) Polyurethane-coated urea using fully vegetable oil-based polyols: design, nutrient release and degradation. Prog Org Coat 133:267–275. https://doi.org/10.1016/j.porgcoat.2019.04.053

    Article  CAS  Google Scholar 

  19. Kobayashi T, Nozoye T, Nishizawa NK (2019) Iron transport and its regulation in plants. Free Radic Biol Med 133:11–20. https://doi.org/10.1016/j.freeradbiomed.2018.10.439

    Article  CAS  PubMed  Google Scholar 

  20. Millaleo R, Reyes- Diaz M, Ivanov AG, Mora ML, Alberdi M (2010) Manganese as essential and toxic element for plants: transport, accumulation and resistance mechanisms. J Soil Sci Plant Nutr 10:470–481. https://doi.org/10.4067/S0718-95162010000200008

    Article  Google Scholar 

  21. Brown PH, Cakmak I, Zhang Q (1993) Form and function of zinc plants. Zinc in soils and plants. Springer, Netherlands, Dordrecht, pp 93–106

    Chapter  Google Scholar 

  22. Akkurt I, Çanakciı H, Mavi B, Günoğlu K, Aslan MH, Oral AY, Özer M, Çaglar SH (2011) Natural radioactivity of boron added clay samples. AIP Conf Proc 1400:512–517. https://doi.org/10.1063/1.3663173

    Article  CAS  Google Scholar 

  23. Kaiser BN, Gridley KL, Ngaire Brady J, Phillips T, Tyerman SD (2005) The role of molybdenum in agricultural plant production. Ann Bot 96:745–754. https://doi.org/10.1093/aob/mci226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Yruela I (2005) Copper in plants. Braz J Plant Physiol 17:145–156. https://doi.org/10.1590/S1677-04202005000100012

    Article  CAS  Google Scholar 

  25. Naqib SA, Jahan MS (2017) The function of molybdenum and boron on the plants. Open Access J Agric Res 2:1–8. https://doi.org/10.23880/OAJAR-16000136

    Article  Google Scholar 

  26. Tekin HO, Abouhaswa AS, Kilicoglu O, Issa SAM, Akkurt I, Rammah YS (2020) Fabrication, physical characteristic, and gamma-photon attenuation parameters of newly developed molybdenum reinforced bismuth borate glasses. Phys Scr 95:115703. https://doi.org/10.1088/1402-4896/abbf6e

    Article  CAS  Google Scholar 

  27. Boodaghi Malidarre R, Akkurt I (2021) Monte Carlo simulation study on TeO2–Bi2O–PbO–MgO–B2O3 glass for neutron-gamma 252Cf source. J Mater Sci Mater 32:11666–11682. https://doi.org/10.1007/s10854-021-05776-y

    Article  CAS  Google Scholar 

  28. Songkhum P, Wuttikhun T, Chanlek N, Khemthong P (2018) Controlled release studies of boron and zinc from layered double hydroxides as the micronutrient hosts for agricultural application. Appl Clay Sci 152:311–322. https://doi.org/10.1016/j.clay.2017.11.028

    Article  CAS  Google Scholar 

  29. Shrestha S, Becker M, Lamers JPA, Wimmer MA (2020) Boron and zinc fertilizer applications are essential in emerging vegetable-based crop rotations in Nepal. J Plant Nutr Soil Sci 183:439–454. https://doi.org/10.1002/jpln.202000151

    Article  CAS  Google Scholar 

  30. Meriño-Gergichevich C, Luengo-Escobar A, Alarcón D, Reyes-Díaz M, Ondrasek G, Morina F, Ogass K (2021) Combined spraying of boron and zinc during fruit set and premature stage improves yield and fruit quality of European hazelnut cv. Tonda di Giffoni Front Plant Sci 12:1–17. https://doi.org/10.3389/fpls.2021.661542

    Article  Google Scholar 

  31. Hussain S, Maqsood MA, Rengel Z, Aziz T (2012) Biofortification and estimated human bioavailability of zinc in wheat grains as influenced by methods of zinc application. Plant Soil 361:279–290. https://doi.org/10.1007/s11104-012-1217-4

    Article  CAS  Google Scholar 

  32. Umar W, Hameed MK, Aziz T, Maqsood MA, Bilal HM, Rasheed N (2021) Synthesis, characterization and application of ZnO nanoparticles for improved growth and Zn biofortification in maize. Arch Agron Soil Sci 67:1164–1176. https://doi.org/10.1080/03650340.2020.1782893

    Article  CAS  Google Scholar 

  33. Umar W, Ayub MA, Rehman MZ ur, Ahmad HR, Farooqi ZUR, Shahzad A, Rehman U, Mustafa A, Nadeem M (2020) Nitrogen and phosphorus use efficiency in agroecosystems. In: Resources use efficiency in agriculture. Springer Singapore, Singapore, pp 213–257

  34. Shivay YS, Pooniya V, Pal M, Ghasal PC, Bana R, Jat SL (2019) Coated urea materials for improving yields, profitability, and nutrient use efficiencies of aromatic rice. Glob Chall 3:1900013. https://doi.org/10.1002/gch2.201900013

    Article  PubMed  PubMed Central  Google Scholar 

  35. Jadon P, Selladurai R, Yadav SS, Coumar MV, Dotaniya ML, Singh AK, Bhadouriya J, Kundu S (2018) Volatilization and leaching losses of nitrogen from different coated urea fertilizers. J Soil Sci Plant Nutr 18:1036–1047. https://doi.org/10.4067/S0718-95162018005002903

    Article  CAS  Google Scholar 

  36. Irfan M, Khan Niazi MB, Hussain A, Farooq W, Zia MH (2018) Synthesis and characterization of zinc-coated urea fertilizer. J Plant Nutr 41:1625–1635. https://doi.org/10.1080/01904167.2018.1454957

    Article  CAS  Google Scholar 

  37. Dimkpa CO, Andrews J, Fugice J, Singh U, Bindraban PS, Elmer WH, Gardea-Torresdey JL, White JC (2020) Facile coating of urea with low-dose ZnO nanoparticles promotes wheat performance and enhances Zn uptake under drought stress. Front Plant Sci 11:1–12. https://doi.org/10.3389/fpls.2020.00168

    Article  Google Scholar 

  38. Shuman LM (2005) Micronutrients. In: Hillel D (ed) Encyclopedia of soils in the environment. Academic, pp 479–486

    Chapter  Google Scholar 

  39. Watling HR (2013) Chalcopyrite hydrometallurgy at atmospheric pressure: 1. Review of acidic sulfate, sulfate–chloride and sulfate–nitrate process options. Hydrometallurgy 140:163–180. https://doi.org/10.1016/j.hydromet.2013.09.013

    Article  CAS  Google Scholar 

  40. Aulakh MS, Bijay-Singh (1996) Nitrogen losses and fertilizer N use efficiency in irrigated porous soils. Nutr Cycl Agroecosyst 47:197–212. https://doi.org/10.1007/BF01986275

    Article  Google Scholar 

  41. Isaacs-Paez ED, Leyva-Ramos R, Jacobo-Azuara A, Martinez-Rosales JM, Flores-Cano JV (2014) Adsorption of boron on calcined Al Mg layered double hydroxide from aqueous solutions. Mechanism and effect of operating conditions. Chem Eng J 245:248–257. https://doi.org/10.1016/j.cej.2014.02.031

    Article  CAS  Google Scholar 

  42. Laohhasurayotin K, Yiamsawas D, Kangwansupamonkon W (2022) Recent developments in bio-based materials for controlled-release fertilizers. In: Hunt AJ, Supanchaiyamat N, Jetsrisuparb K, Knijnenburg JTN (eds) Wiley. Wiley, pp 361–397

    Google Scholar 

  43. Cole JC, Smith MW, Penn CJ, Cheary BS, Conaghan KJ (2016) Nitrogen, phosphorus, calcium, and magnesium applied individually or as a slow release or controlled release fertilizer increase growth and yield and affect macronutrient and micronutrient concentration and content of field-grown tomato plants. Sci Hortic 211:420–430. https://doi.org/10.1016/j.scienta.2016.09.028

    Article  CAS  Google Scholar 

  44. Gil-Ortiz R, Naranjo MÁ, Ruiz-Navarro A, Atares S, García C, Zotarelli L, San Bautista A, Vicente O (2020) Enhanced agronomic efficiency using a new controlled-released, polymeric-coated nitrogen fertilizer in rice. Plants 9:1183. https://doi.org/10.3390/plants9091183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Choi MMS, Meisen A (1997) Sulfur coating of urea in shallow spouted beds. Chem Eng Sci 52:1073–1086. https://doi.org/10.1016/S0009-2509(96)00377-6

    Article  CAS  Google Scholar 

  46. Shaviv A (2001) Advances in controlled-release fertilizers. pp 1–49

  47. Shoji S, Kanno H (1994) Use of polyolefin-coated fertilizers for increasing fertilizer efficiency and reducing nitrate leaching and nitrous oxide emissions. Fertil Res 39:147–152. https://doi.org/10.1007/BF00750913

    Article  CAS  Google Scholar 

  48. Xu M, Li D, Li J, Qin D, Hosen Y, Shen H, Cong R, He X (2013) Polyolefin-coated urea decreases ammonia volatilization in a double rice system of southern China. Agron J 105:277–284. https://doi.org/10.2134/agronj2012.0222

    Article  CAS  Google Scholar 

  49. Wei Y, Li J, Li Y, Zhao B, Zhang L, Yang X, Chang J (2017) Research on permeability coefficient of a polyethylene controlled-release film coating for urea and relevant nutrient release pathways. Polym Test 59:90–98. https://doi.org/10.1016/j.polymertesting.2017.01.019

    Article  CAS  Google Scholar 

  50. Ni B, Liu M, Lü S, Xie L, Wang Y (2011) Environmentally friendly slow-release nitrogen fertilizer. J Agric Food Chem 59:10169–10175. https://doi.org/10.1021/jf202131z

    Article  CAS  PubMed  Google Scholar 

  51. Tao S, Liu J, Jin K, Qiu X, Zhang Y, Ren X, Hu S (2011) Preparation and characterization of triple polymer-coated controlled-release urea with water-retention property and enhanced durability. J Appl Polym Sci 120:2103–2111. https://doi.org/10.1002/app.33366

    Article  CAS  Google Scholar 

  52. Zhang Y, Gao P, Zhao L, Chen Y (2016) Preparation and swelling properties of a starch-g-poly(acrylic acid)/organo-mordenite hydrogel composite. Front Chem Sci Eng 10:147–161. https://doi.org/10.1007/s11705-015-1546-y

    Article  CAS  Google Scholar 

  53. Tomaszewska M, Jarosiewicz A (2002) Use of polysulfone in controlled-release NPK fertilizer formulations. J Agric Food Chem 50:4634–4639. https://doi.org/10.1021/jf0116808

    Article  CAS  PubMed  Google Scholar 

  54. Azeem B, Kushaari K, Man ZB, Basit A, Thanh TH (2014) Review on materials & methods to produce controlled release coated urea fertilizer. J Control Release 181:11–21. https://doi.org/10.1016/j.jconrel.2014.02.020

    Article  CAS  PubMed  Google Scholar 

  55. Uzoh CF, Onukwuli OD, Ozofor IH, Odera RS (2019) Encapsulation of urea with alkyd resin-starch membranes for controlled N2 release: synthesis, characterization, morphology and optimum N2 release. Process Saf Environ 121:133–142. https://doi.org/10.1016/j.psep.2018.10.015

    Article  CAS  Google Scholar 

  56. Pathan S, Ahmad S (2013) S-triazine ring-modified waterborne alkyd: synthesis, characterization, antibacterial, and electrochemical corrosion studies. ACS Sustain Chem Eng 1:1246–1257. https://doi.org/10.1021/sc4001077

    Article  CAS  Google Scholar 

  57. Otabor JI, Rotimi J, Opoggen L, Egbon IN, Uyi OO (2019) Phytochemical constituents and larvicidal efficacy of methanolic extracts of Cymbopogon citratus, Ocimum gratissimum and Vernonia amygdalina against Culex quinquefasciatus larvae. J Appl SCI Environ Manag 23:701. https://doi.org/10.4314/jasem.v23i4.20

    Article  CAS  Google Scholar 

  58. Santos CF, Agardy T, Andrade F, Calado H, Crowder LB, Ehler CN, García-Morales S, Gissi E, Halpern BS, Orbach MK, Pörtner H-O, Rosa R (2020) Integrating climate change in ocean planning. Nat Sustain. https://doi.org/10.1038/s41893-020-0513-x

    Article  Google Scholar 

  59. Wang Q, Dong F, Dai J, Zhang Q, Jiang M, Xiong Y (2019) Recycled-oil-based polyurethane modified with organic silicone for controllable release of coated fertilizer. Polymers (Basel) 11:454. https://doi.org/10.3390/polym11030454

    Article  CAS  PubMed  Google Scholar 

  60. An D, Liu B, Yang L, Wang TJ, Kan C (2017) Fabrication of graphene oxide/polymer latex composite film coated on KNO3 fertilizer to extend its release duration. Chem Eng J 311:318–325. https://doi.org/10.1016/j.cej.2016.11.109

    Article  CAS  Google Scholar 

  61. Chien SH, Prochnow LI, Tu S, Snyder CS (2011) Agronomic and environmental aspects of phosphate fertilizers varying in source and solubility: an update review. Nutr Cycl Agroecosyst 89:229–255. https://doi.org/10.1007/s10705-010-9390-4

    Article  Google Scholar 

  62. Xie L, Liu M, Ni B, Zhang X, Wang Y (2011) Slow-release nitrogen and boron fertilizer from a functional superabsorbent formulation based on wheat straw and attapulgite. Chem Eng J 167:342–348. https://doi.org/10.1016/j.cej.2010.12.082

    Article  CAS  Google Scholar 

  63. Santos GA, Korndorfer GH, Pereira HS, Paye W (2018) Addition of micronutrients to NPK formulation and initial development of maize plants. Biosci J 34:927–936. https://doi.org/10.14393/BJ-v34n1a2018-36690

    Article  Google Scholar 

  64. Sitthisuwannakul K, Boonpavanitchakul K, Wirunmongkol T, Muthitamongkol P, Kangwansupamonkon W (2022) A tunable controlled-release urea fertilizer coated with a biodegradable polyurethane-nanoclay composite layer. J Coat Technol Res. https://doi.org/10.1007/s11998-022-00688-w.(forthcoming)

    Article  Google Scholar 

  65. Korsmeyer RW, Gurny R, Doelker E, Buri P, Peppas NA (1983) Mechanisms of solute release from porous hydrophilic polymers. Int J Pharm 15:25–35. https://doi.org/10.1016/0378-5173(83)90064-9

    Article  CAS  Google Scholar 

  66. Peppas NA (1985) Analysis of Fickian and non-Fickian drug release from polymers. Pharm Acta Helv 60:110–111

    CAS  PubMed  Google Scholar 

  67. Elving PJ, Markowitz JM, Isadore R (1956) Preparation of buffer systems of constant ionic strength. Anal Chem 28:1179–1180. https://doi.org/10.1021/ac60115a034

    Article  CAS  Google Scholar 

  68. Baishya H (2017) Application of mathematical models in drug release kinetics of Carbidopa and Levodopa ER tablets. J Dev Drugs 06:1–8. https://doi.org/10.4172/2329-6631.1000171

    Article  CAS  Google Scholar 

  69. Siepmann J, Peppas NA (2011) Higuchi equation: derivation, applications, use and misuse. Int J Pharm 418:6–12

    Article  CAS  PubMed  Google Scholar 

  70. Hixon AW, Crowell JH (1931) Dependence of reaction velocity upon surface and agitation. Ind Eng Chem Res 23:923–931. https://doi.org/10.1021/ie50260a018

    Article  Google Scholar 

  71. Ritger PL, Peppas NA (1987) A simple equation for description of solute release I fickian and non-fickian release from non-swellable devices in the form of slabs, spheres, cylinders or discs. J Control Release 5:26. https://doi.org/10.1016/0168-3659(87)90034-4

    Article  Google Scholar 

  72. Bortoletto-Santos R, Ribeiro C, Polito WL (2016) Controlled release of nitrogen-source fertilizers by natural-oil-based poly(urethane) coatings: the kinetic aspects of urea release. J Appl Polym Sci 43790:1–8. https://doi.org/10.1002/app.43790

    Article  CAS  Google Scholar 

  73. Jarosiewicz A, Tomaszewska M (2003) Controlled-release NPK fertilizer encapsulated by polymeric membranes. J Agric Food Chem 51:413–417. https://doi.org/10.1021/jf020800o

    Article  CAS  PubMed  Google Scholar 

  74. Ahmad NNR, Fernando WJN, Uzir MH (2015) Parametric evaluation using mechanistic model for release rate of phosphate ions from chitosan-coated phosphorus fertiliser pellets. Biosyst Eng 129:78–86. https://doi.org/10.1016/j.biosystemseng.2014.09.015

    Article  Google Scholar 

  75. Giroto AS, Guimarães GG, Colnago LA, Klamczynski A, Glenn G, Ribeiro C (2019) Controlled release of nitrogen using urea-melamine-starch composites. J Clean Prod 217:448–455. https://doi.org/10.1016/j.jclepro.2019.01.275

    Article  CAS  Google Scholar 

  76. Chen ML, Yang F, Zhou ZH (2012) Conversion of a highly water-soluble acidic coordination polymer constructed by 1,3-propanediaminetetraacetato zinc nitrate to its bromide and isothiocyanate derivatives. Polyhedron 47:60–64. https://doi.org/10.1016/j.poly.2012.07.102

    Article  CAS  Google Scholar 

  77. Beegam A, Prasad P, Jose J, Oliveira M, Costa FG, Soares AMVM, Gonçalves PP, Trindade T, Kalarikkal N, Thomas S, de Pereira ML (2016) Environmental fate of zinc oxide nanoparticles: risks and benefits. Intech i. https://doi.org/10.5772/57353

    Article  Google Scholar 

  78. Gillman GP, Noble AD (2001) Fertilizer, soil treatment agent and soil-less medium. WO/2001/055057

  79. Trenkel ME (1997) Improved fertilizer use efficiency. controlled-release and stabilized fertilizers in agriculture. International Fertilizer Industry Association, Paris, France

  80. Lu P, Zhang M, Li Q, Xu Y (2013) Structure and properties of controlled release fertilizers coated with thermosetting resin. Polym Plast Technol Eng 51:381–386. https://doi.org/10.1080/03602559.2012.752000

    Article  CAS  Google Scholar 

  81. Narasimhan B, Peppas NA (1997) Molecular analysis of drug delivery systems controlled by dissolution of the polymer carrier. J Pharm Sci 86:297–304. https://doi.org/10.1021/js960372z

    Article  PubMed  Google Scholar 

  82. Lee PI, Peppas NA (1987) Prediction of polymer dissolution in swellable controlled-release systems. J Control Release 6:207–215

    Article  CAS  Google Scholar 

  83. Selim MS, Shenashen MA, Elmarakbi A, El-Saeed AM, Selim MM, El-Safty SA (2017) Sunflower oil-based hyperbranched alkyd/spherical ZnO nanocomposite modeling for mechanical and anticorrosive applications. RSC Adv 7:21796–21808. https://doi.org/10.1039/c7ra01343d

    Article  CAS  Google Scholar 

  84. Palanivel A, Veerabathiran A, Duruvasalu R, Iyyanar S, Velumayil R (2017) Dynamic mechanical analysis and crystalline analysis of hemp fiber reinforced cellulose filled epoxy composite. Polimeros 27:309–319. https://doi.org/10.1590/0104-1428.00516

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the full financial support from the Agricultural Research Development Agency (ARDA) (CRP6105020560) and are sincerely thankful to Prof. Dr. Supapan Seraphin, Dr. Doungporn Crespy, and Dr. Kanittha Boonpavanitchakul for their fruitful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wiyong Kangwansupamonkon.

Ethics declarations

Conflict of interest

All authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 301 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boonying, P., Sottiudom, S., Nontasorn, P. et al. Novel coating films containing micronutrients for controlled-release urea fertilizer: release mechanisms and kinetics study. Polym. Bull. 80, 9627–9649 (2023). https://doi.org/10.1007/s00289-022-04529-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-022-04529-z

Keywords

Navigation