Skip to main content
Log in

Preparation of poly(ethylene terephthalate) copolyester with phosphorus-containing comonomer: characterization, thermal behavior, and non-isothermal crystallization kinetics

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

A series of polyethylene terephthalate-co-[(6-oxido-6H-dibenz[c,e][1,2]oxaphosphorin-6-yl)methyl] butanedioate (PET-co-PEDDP) copolyesters were prepared through the reaction among ethylene glycol (EG), terephthalic acid, and [(6-oxido-6H-dibenz[c,e] oxaphosphorin-6-yl)methyl]butanedioic acid (DDP) through the direct esterification and polycondensation processes. Structure study of the prepared copolyesters using Fourier transform infrared spectroscopy and nuclear magnetic resonance (NMR) indicates polyester production. It is concluded that DDP comonomer incorporated into the polymer chain. Examination of the thermal treatment of all samples detected no phase separation. Melting point linearly decreases with DDP content; the Baur’s equation could describe the melting point. Melt crystallization kinetics of all synthesized samples in a wide range of cooling rates were investigated by various kinetics models. Due to secondary crystallization, some simple models such as the Avrami equation could not fit the data very well. The best crystallization kinetics model was the Hay model by taking into consideration the secondary crystallization, which is the main achievement of this research. Furthermore, the effects of comonomer on the thermal degradation of copolyesters were also analyzed using thermal gravimetry analysis. The Coats–Redfern equation was applied to examine the influence of comonomer on thermal degradation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Scheirs J, Long TE (eds) (2005) Modern polyesters: chemistry and technology of polyesters and copolyesters. Wiley

    Google Scholar 

  2. Fakirov S (ed) (2002) Handbook of thermoplastic polyesters. Wiley

    Google Scholar 

  3. Ian Tiseo, Global production capacity of polyethylene terephthalate 2014–2024, Statista Research Department

  4. Horrocks AR, Price D, Price D (eds) (2001) Fire retardant materials. Woodhead Publishing

    Google Scholar 

  5. Ibbotson C, Sheldon RP (1979) Heterogeneous crystallisation of polyethylene terephthalate. British Polym J (Polymer International) 11(3):146–150. https://doi.org/10.1002/pi.4980110308

    Article  CAS  Google Scholar 

  6. Phang IY, Pramoda KP, Liu T, He C (2004) Crystallization and melting behavior of polyester/clay nanocomposites. Polym Int 53(9):1282–1289. https://doi.org/10.1002/pi.1513

    Article  CAS  Google Scholar 

  7. Mohsen-Nia M, Memarzadeh MR (2013) Characterization and non-isothermal crystallization behavior of biodegradable poly(ethylene sebacate)/SiO2 nanocomposites. Polym Bull 70(8):2471–2491. https://doi.org/10.1007/s00289-013-0967-3

    Article  CAS  Google Scholar 

  8. Kahkesh S, Rafizadeh M (2020) Flame retardancy and thermal properties of poly(butylene succinate)/nano-boehmite composites prepared via in situ polymerization. Polym Eng Sci 60(9):2262–2271. https://doi.org/10.1002/pen.25468

    Article  CAS  Google Scholar 

  9. Agrawal H, Awasthi K, Saraswat VK (2014) Non-isothermal crystallization kinetics of TiO2 nanoparticle-filled poly(ethylene terephthalate) with structural and chemical properties. Polym Bull 71(6):1539–1555. https://doi.org/10.1007/s00289-014-1140-3

    Article  CAS  Google Scholar 

  10. Lin X, Zhang H, Ke M, Xiao L, Zuo D, Qian Q, Chen Q (2014) Non-isothermal crystallization kinetics of poly(ethylene terephthalate)/mica composites. Polym Bull 71(9):2287–2301. https://doi.org/10.1007/s00289-014-1187-1

    Article  CAS  Google Scholar 

  11. Gao W, Wang Z, Zhao Z, Ding L, Zhu Y (2017) Effect of barium sulfate on thermal stability and crystallization properties of poly (ethylene terephthalate). J Therm Anal Calorim 129(2):1047–1055. https://doi.org/10.1007/s10973-017-6237-0

    Article  CAS  Google Scholar 

  12. Valapa R, Hussain S, Krishnan Iyer P, Pugazhenthi G, Katiyar V (2016) Non-isothermal crystallization kinetics of sucrose palmitate reinforced poly(lactic acid) bionanocomposites. Polym Bull 73(1):21–38. https://doi.org/10.1007/s00289-015-1468-3

    Article  CAS  Google Scholar 

  13. Wang G, Chen Y (2018) Isothermal crystallization and spherulite morphology of poly(ethylene terephthalate)/Na+-MMT nanocomposites prepared through solid-state mechanochemical method. J Therm Anal Calorim 131(3):2611–2624. https://doi.org/10.1007/s10973-017-6857-4

    Article  CAS  Google Scholar 

  14. Mohammadi S, Taremi FA, Rafizadeh M (2012) Crystallization conditions effect on molecular weight of solid-state polymerized poly(ethylene terephthalate). Iranian Polym J 21(7):415–422. https://doi.org/10.1007/s13726-012-0044-z

    Article  CAS  Google Scholar 

  15. Papageorgiou G, Achilias D, Bikiaris D, Karayannidis G (2006) Isothermal and non-isothermal crystallization kinetics of branched and partially crosslinked PET: DSC study. J Therm Anal Calorim 84(1):85–89. https://doi.org/10.1007/s10973-005-7366-4

    Article  CAS  Google Scholar 

  16. Saeed HA, Eltahir YA, Xia Y, Yimin W (2014) Non-isothermal crystallization kinetics and nucleation activity of hyperbranched polyester (HBPET) in recycled PET. Polym Bull 71(3):595–612. https://doi.org/10.1007/s00289-013-1080-3

    Article  CAS  Google Scholar 

  17. Ravari F, Mashak A, Nekoomanesh M, Mobedi H (2013) Non-isothermal cold crystallization behavior and kinetics of poly(l-lactide): effect of l-lactide dimer. Polym Bull 70(9):2569–2586. https://doi.org/10.1007/s00289-013-0972-6

    Article  CAS  Google Scholar 

  18. Wang LS, Wang XL, Yan GL (2000) Synthesis, characterisation and flame retardance behaviour of poly(ethylene terephthalate) copolymer containing triaryl phosphine oxide. Polym Degrad Stab 69(1):127–130. https://doi.org/10.1016/S0141-3910(00)00050-1

    Article  CAS  Google Scholar 

  19. Wang CS, Shieh JY, Sun YM (1999) Phosphorus containing PET and PEN by direct esterification. Eur Polym J 35(8):1465–1472. https://doi.org/10.1016/S0014-3057(98)00234-1

    Article  CAS  Google Scholar 

  20. Chang SJ, Chang FC (1999) Synthesis and characterization of copolyesters containing the phosphorus linking pendent groups. J Appl Polym Sci 72(1):109–122. https://doi.org/10.1002/(SICI)1097-4628(19990404)72:1%3c109::AID-APP12%3e3.0.CO;2-Q

    Article  CAS  Google Scholar 

  21. Mohammadi Avarzman A, Rafizadeh M, Afshar Taromi F (2021) Branched polyester based on the polyethylene tere/iso phthalate and trimellitic anhydride as branching agent. Polym Bull 79(8):1–23. https://doi.org/10.1007/s00289-021-03802-x

    Article  CAS  Google Scholar 

  22. Zhou C, Wei Z, Yu Y, Li Y (2015) Synthesis and crystallization behavior of novel poly(butylene succinate) copolyesters containing phosphorus pendent groups. J Therm Anal Calorim 120(3):1799–1810. https://doi.org/10.1007/s10973-015-4511-6

    Article  CAS  Google Scholar 

  23. Naghavi Sheikholeslami S, Rafizadeh M, Afshar Taromi F, Shirali H (2017) Crystallization and photo-curing kinetics of biodegradable poly(butylene succinate-co-butylene fumarate) short-segmented block copolyester. Polym Int 66(2):289–299. https://doi.org/10.1002/pi.5264

    Article  CAS  Google Scholar 

  24. Al-Mulla A (2012) Determination of crystallization parameters and occurrence of trans-reaction in a ternary polymer blend system. Polym Bull 69(9):1053–1071. https://doi.org/10.1007/s00289-012-0779-x

    Article  CAS  Google Scholar 

  25. Kint DP, Muñoz-Guerra S (2003) Modification of the thermal properties and crystallization behaviour of poly(ethylene terephthalate) by copolymerization. Polym Int 52:321–336. https://doi.org/10.1002/pi.1175

    Article  CAS  Google Scholar 

  26. Chen M, Wang HC, Ko CY, Chen RY, Wang CL, Tseng IM (2008) Crystallization kinetics and melting behavior of poly[(trimethylene terephthalate)-co-(38 mol% ethylene terephthalate)] copolymer. Polym Int 57(2):297–305. https://doi.org/10.1002/pi.2346

    Article  CAS  Google Scholar 

  27. Sánchez-Arrieta N, De Ilarduya AM, Alla A, Muñoz-Guerra S (2005) Poly(ethylene terephthalate) copolymers containing 1, 4-cyclohexane dicarboxylate units. Eur Polym J 41(7):1493–1501. https://doi.org/10.1016/j.eurpolymj.2005.02.004

    Article  CAS  Google Scholar 

  28. Charles J, Ramkumaar GR (2009) FTIR and thermal studies on polyethylene terephthalate and acrylonitrile butadiene styrene. Asian J Chem 21(6):4389

    CAS  Google Scholar 

  29. Zhang C, Wang J, Song S (2019) Preparation of a novel type of flame retardant diatomite and its application in silicone rubber composites. Adv Powder Technol 30(8):1567–1575. https://doi.org/10.1016/j.apt.2019.05.002

    Article  CAS  Google Scholar 

  30. Jog JP (1995) Crystallization of polyethyleneterephthalate. J Macromol Sci Part C Polym Rev 35(3):531–553. https://doi.org/10.1080/15321799508014598

    Article  Google Scholar 

  31. Wood LA (1958) Glass transition temperatures of copolymers. J Polym Sci 28(117):319–330. https://doi.org/10.1002/pol.1958.1202811707

    Article  CAS  Google Scholar 

  32. Balachandar M, Balakrishnan T, Kothandaraman H (1983) Glass transition and melting temperatures of random copolyesters of poly (ethylene terephthalate) with p-hydroxybenzoic acid, 3. Die Makromolekulare Chemie Macromol Chem Phys 184(2):443–453. https://doi.org/10.1002/macp.1983.021840218

    Article  CAS  Google Scholar 

  33. Wang ZG, Hsiao BS, Sauer BB, Kampert WG (1999) The nature of secondary crystallization in poly(ethylene terephthalate). Polymer 40(16):4615–4627. https://doi.org/10.1016/S0032-3861(99)00067-1

    Article  CAS  Google Scholar 

  34. Kelly CA, Hay JN, Turner RP, Jenkins MJ (2020) The effect of a secondary process on the analysis of isothermal crystallisation kinetics by differential scanning calorimetry. Polymers 12(1):19. https://doi.org/10.3390/polym12010019

    Article  CAS  Google Scholar 

  35. Chen Z, Hay JN, Jenkins MJ (2016) The effect of secondary crystallization on crystallization kinetics–polyethylene terephthalate revisited. Eur Polym J 81:216–223. https://doi.org/10.1016/j.eurpolymj.2016.05.028

    Article  CAS  Google Scholar 

  36. Gaonkar AA, Murudkar VV, Deshpande VD (2020) Comparison of crystallization kinetics of polyethylene terephthalate (PET) and reorganized PET. Thermochim Acta 683:178472

    Article  CAS  Google Scholar 

  37. Zhang R, Zheng H, Lou X, Ma D (1994) Crystallization characteristics of polypropylene and low ethylene content polypropylene copolymer with and without nucleating agents. J Appl Polym Sci 51(1):51–56

    Article  CAS  Google Scholar 

  38. Ozawa T (1971) Kinetics of non-isothermal crystallization. Polymer 12(3):150–158

    Article  CAS  Google Scholar 

  39. Liu T, Mo Z, Wang S, Zhang H (1997) Nonisothermal melt and cold crystallization kinetics of poly(aryl ether ether ketone ketone). Polym Eng Sci 37(3):568–575. https://doi.org/10.1002/pen.11700

    Article  CAS  Google Scholar 

  40. Regnier N, Guibe C (1997) Methodology for multistage degradation of polyimide polymer. Polym Degrad Stab 55(2):165–172. https://doi.org/10.1016/S0141-3910(96)00115-2

    Article  CAS  Google Scholar 

Download references

Funding

No funding was received for conducting this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehdi Rafizadeh.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 694 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moghadam, A.S.N., Rafizadeh, M. & Taromi, F.A. Preparation of poly(ethylene terephthalate) copolyester with phosphorus-containing comonomer: characterization, thermal behavior, and non-isothermal crystallization kinetics. Polym. Bull. 80, 8151–8180 (2023). https://doi.org/10.1007/s00289-022-04447-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-022-04447-0

Keywords

Navigation