Skip to main content

Advertisement

Log in

Antimicrobial incorporation on 3D-printed polymers used as potential dental materials and biomaterials: a systematic review of the state of the art

  • Review Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

The association of 3D-printed polymers and incorporation with antimicrobial agents is reported to be effective against different microorganisms. Due to a large number of articles, different polymers, antimicrobial agents, and the heterogeneity of methods, understanding the results becomes difficult, so a systematic review is necessary. The objective of this systematic review is to demonstrate the current state of the art of incorporating antimicrobial agents into printed polymers as potential dental materials and biomaterials. The review was structured in accordance with Preferred Reporting Items for Systematic Review and Meta-Analysis guidelines and was registered with the Open Science Framework (OSF) (osf.io/sym4c). Searches were performed in Embase, Pubmed, Science Direct, and Scopus databases. The articles were selected in 2 steps by 2 independent reviewers to the eligibility criteria. The Joanna Briggs Institute-adapted quasi-experimental study evaluation tool was used to assess the risk of bias. The incorporation demonstrated a high capacity of antimicrobial effect against several microorganisms, including Streptococcus mutans, Staphylococcus aureus, Candida scotti, Escherichia coli, Staphylococcus epidermidis, and Candida albicans. The studies identified in this systematic review showed a good interaction between the technologies, which allowed the combination of polymers and antimicrobials, demonstrating efficacy against several species, in addition to the chemical, mechanical, and biological properties presenting good results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. van Noort R (2012) The future of dental devices is digital. Dent Mater 28:3–12. https://doi.org/10.1016/j.dental.2011.10.014

    Article  PubMed  Google Scholar 

  2. Oliveira TT, Reis AC (2019) Fabrication of dental implants by the additive manufacturing method: a systematic review. J Prosthet Dent 122:270–274. https://doi.org/10.1016/j.prosdent.2019.01.018

    Article  PubMed  Google Scholar 

  3. Mangal U, Min YJ, Seo JY, Kim DE, Cha JY, Lee KJ et al (2020) Changes in tribological and antibacterial properties of poly(methyl methacrylate)-based 3D-printed intra-oral appliances by incorporating nanodiamonds. J Mech Behav Biomed Mater 110:103992. https://doi.org/10.1016/j.jmbbm.2020.103992

    Article  CAS  PubMed  Google Scholar 

  4. Tappa K, Jammalamadaka U (2018) Novel biomaterials used in medical 3D printing techniques. J Funct Biomater 9(1):17. https://doi.org/10.3390/jfb9010017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Mai H-N, Hyun DC, Park JH, Kim DY, Lee SM, Lee DH (2020) Antibacterial drug-release polydimethylsiloxane coating for 3D-printing dental polymer: surface alterations and antimicrobial effects. Pharmaceuticals 12:304. https://doi.org/10.3390/ph13100304

    Article  CAS  Google Scholar 

  6. Castro DT, Holtz RD, Alves OL, Watanabe E, Valente ML, Silva CH, Reis AC (2014) Development of a novel resin with antimicrobial properties for dental application. J Appl Oral Sci 22:442–449. https://doi.org/10.1590/1678-775720130539

    Article  PubMed  PubMed Central  Google Scholar 

  7. de Castro DT, do Nascimento C, Alves OL, de Souza SE, Agnelli JAM, Dos Reis AC (2018) Analysis of the oral microbiome on the surface of modified dental polymers. Arch Oral Biol 93:107–114. https://doi.org/10.1016/j.archoralbio.2018.06.005

    Article  CAS  PubMed  Google Scholar 

  8. Totu EE, Nechifor AC, Nechifor G, Aboul-Enein H, Cristache CM (2017) Poly(methyl methacrylate) with TiO2 nanoparticles inclusion for stereolithography complete denture manufacturing - the future in dental care for elderly edentulous patients? J Dent 59:68–77. https://doi.org/10.1016/j.jdent.2017.02.012

    Article  CAS  PubMed  Google Scholar 

  9. Nagrath M, Sikora A, Graca J, Chinnici JL, Rahman SU, Reddy SG et al (2018) Functionalized prosthetic interfaces using 3D printing: Generating infection neutralizing prosthesis in dentistry. Mater Today Commun 15:114–119. https://doi.org/10.1016/j.mtcomm.2018.02.016

    Article  CAS  Google Scholar 

  10. Campos MR, Botelho AL, Reis AC (2021) Nanostructured silver vanadate decorated with silver particles and their applicability in dental materials: a scoping review. Heliyon 7:e07168. https://doi.org/10.1016/j.heliyon.2021.e07168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Yue J, Zhao P, Gerasimov JY, Lagemaat M, Grotenhuis A, Rustema-Abbing M (2015) 3D-printable antimicrobial composite resins. Adv Funct Mater 25:6756–6767. https://doi.org/10.1002/adfm.201502384

    Article  CAS  Google Scholar 

  12. Vaquette C, Nathalie B, Tran PA (2020) Layered antimicrobial selenium nanoparticle-calcium phosphate coating on 3D printed scaffolds enhanced bone formation in critical size defects. ACS Appl Mater Interfaces 12:55638–55648. https://doi.org/10.1021/acsami.0c17017

    Article  CAS  PubMed  Google Scholar 

  13. Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD et al (2021) (2020) The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ 372:n71. https://doi.org/10.1136/bmj.n71

    Article  PubMed  PubMed Central  Google Scholar 

  14. Tufanaru C, Munn Z, Aromataris E, Campbell J, Hopp L (2017) Chapter 3: Systematic reviews of effectiveness. In: Aromataris E, Munn Z (eds) Joanna Briggs institute reviewer’s manual. The Joanna Briggs Institute, Adelaide. https://doi.org/10.46658/JBIMES-20-04

    Chapter  Google Scholar 

  15. Marin E, Boschetoo F, Zanocco M, Honma T, Ahu W, Pezzotti G (2021) Explorative study on the antibacterial effects of 3D-printed PMMA/nitrides composites. Mat Des 206:109788. https://doi.org/10.1016/j.matdes.2021.109788

    Article  CAS  Google Scholar 

  16. Deng L, Deng Y, Xie K (2017) AgNPs-decorated 3D printed PEEK implant for infection control and bone repair. Colloids Surf B Biointerfaces 160:483–492. https://doi.org/10.1016/j.colsurfb.2017.09.061

    Article  CAS  PubMed  Google Scholar 

  17. Bayraktar I, Doganay D, Coskun C, Kaynak C, Akca G, Unalan HE (2019) 3D printed antibacterial silver nanowire/polylactide nanocomposites. Compos Pt B Eng 172:671–678. https://doi.org/10.1016/j.compositesb.2019.05.059

    Article  CAS  Google Scholar 

  18. Topsakal A, Midha S, Yuca E, Tukay A, Sasmazel HT, Kalaskar DM, Gunduz O (2021) Study on the cytocompatibility, mechanical and antimicrobial properties of 3D printed composite scaffolds based on PVA/Gold nanoparticles (AuNP)/ Ampicillin (AMP) for bone tissue engineering. Mater Today Commun 28:102458. https://doi.org/10.1016/j.mtcomm.2021.102458

    Article  CAS  Google Scholar 

  19. Tappa K, Jammalamadaka U, Weisman JA, Ballard DH, Wolford DD, Pascual-Garrido C et al (2019) 3D printing custom bioactive and absorbable surgical screws, pins, and bone plates for localized drug delivery. J Funct Biomater 10:17. https://doi.org/10.3390/jfb10020017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Muro-Fraguas I, Sainz-García A, Gómez PF, López M, Múgica-Vidal R, Sainz-García E et al (2020) Atmospheric pressure cold plasma anti-biofilm coatings for 3D printed food tools. Innov Food Sci Emerg Technol 64:102404. https://doi.org/10.1016/j.ifset.2020.102404

    Article  CAS  Google Scholar 

  21. Peters K (2010) Polymer optical fiber sensors-a review. Smart Mater Struct 20(1):013002

    Article  Google Scholar 

  22. Di Carlo S, De Angelis F, Brauner E, Pranno N, Tassi G, Senatore M, Bossù M (2020) Flexural strength and elastic modulus evaluation of structures made by conventional PMMA and PMMA reinforced with graphene. Eur Rev Med Pharm Sci 24(10):5201–5208

    Google Scholar 

  23. Venâncio C, Melnic I, Tamayo-Belda M, Oliveira M, Martins MA, Lopes I (2022) Polymethylmethacrylate nanoplastics can cause developmental malformations in early life stages of Xenopus laevis. Sci Total Environ 806(Pt1):150491. https://doi.org/10.1016/j.scitotenv.2021.150491

    Article  CAS  PubMed  Google Scholar 

  24. Hazim A, Abduljalil HM, Hashim A (2020) Analysis of structural and electronic properties of novel (PMMA/Al2O3, PMMA/Al2O3-Ag, PMMA/ZrO2, PMMA/ZrO2-Ag, PMMA-Ag) nanocomposites for low cost electronics and optics applications. Trans Electr Electron Mater 21(1):48–67

    Article  Google Scholar 

  25. Martinez-Seijas P, Díaz-Galvis LA, Hernando J, Leizaola-Cardesa IO, Aguilar-Salvatierra A, Gómez-Moreno G (2018) Polymethyl methacrylate custom-made prosthesis: a novel three-dimension printing-aided fabrication technique for cranial and/or orbital reconstruction. J Craniofac Surg. 29:e438–e440

    Article  PubMed  Google Scholar 

  26. Panayotov IV, Orti V, Cuisinier F, Yachouh J (2016) Polyetheretherketone (PEEK) for medical applications. J Mater Sci Mater Med. 27:118

    Article  PubMed  Google Scholar 

  27. Sharma N, Aghlmandi S, Cao S, Kunz C, Honigmann P, Thieringer FM (2019) Quality characteristics and clinical relevance of in-house 3D-printed customized polyetheretherketone (PEEK) implants for craniofacial reconstruction. J Clin Med 9:2818. https://doi.org/10.3390/jcm9092818

    Article  Google Scholar 

  28. Papathanasiou I, Kamposiora P, Papavasiliou G, Ferrari M (2020) The use of PEEK in digital prosthodontics: a narrative review. BMC Oral Health 20:217. https://doi.org/10.1186/s12903-020-01202-7

    Article  PubMed  PubMed Central  Google Scholar 

  29. Najeeb S, Zafar MS, Khurshid Z, Siddiqui F (2016) Applications of polyetheretherketone (PEEK) in oral implantology and prosthodontics. J Prosthodont Res 60:12–19. https://doi.org/10.1016/j.jpor.2015.10.001

    Article  PubMed  Google Scholar 

  30. da Silva GG, Shimano MVW, Macedo AP, da Costa Valente ML, Dos Reis AC (2022) In vitro assessment of polyetheretherketone for an attachment component for an implant-retained overdenture. J Prosthet Dent 127(2):319-e1. https://doi.org/10.1016/j.prosdent.2021.07.031

    Article  CAS  Google Scholar 

  31. Akther F, Yakob SB, Nguyen NT, Ta HT (2020) Surface modification techniques for endothelial cell seeding in PDMS microfluidic devices. Biosensors 10:182. https://doi.org/10.3390/bios10110182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Gonzales RR, Kato N, Awaji J, Matsuyama H (2021) Development of polydimethylsiloxane composite membrane for organic solvent separation. Sep Purif Technol 285:120369. https://doi.org/10.1016/j.seppur.2021.120369

    Article  CAS  Google Scholar 

  33. Lei X, Ma L, Li Y, Cheng Y, Cheng GJ, Liu F (2022) Highly sensitive and wide-range flexible pressure sensor based on carbon nanotubes-coated polydimethylsiloxane foam. Mater Lett 308:131151. https://doi.org/10.1016/j.matlet.2021.131151

    Article  CAS  Google Scholar 

  34. Teodorescu M, Bercea M, Morariu S (2019) Biomaterials of PVA and PVP in medical and pharmaceutical applications: perspectives and challenges. Biotechnol Adv 37:109–131. https://doi.org/10.1016/j.biotechadv.2018.11.008

    Article  CAS  PubMed  Google Scholar 

  35. Liu R, Dai L, Si C, Zeng Z (2018) Antibacterial and hemostatic hydrogel via nanocomposite from cellulose nanofibers. Carbohydr Polym 195:63–70. https://doi.org/10.1016/j.carbpol.2018.04.085

    Article  CAS  PubMed  Google Scholar 

  36. Wang L, Ding Y, Li N, Chai Y, Li Q, Du Y, et al (2022) Nanobody-based polyvinyl alcohol beads as antifouling adsorbents for selective removal of tumor necrosis factor-α. Chin Chem Lett https://doi.org/10.1016/j.cclet.2021.12.087 (In Press)

  37. Dong R, Feng L, Liu P, Li X, Huang R, Liu G, Chen J (2022) Preparation of nanocellulose-polyvinyl alcohol composite hydrogels from Desmodium intortum (Mill) Urb: chemical property characterization. Ind Crops Prod 176:114371. https://doi.org/10.1016/j.indcrop.2021.114371

    Article  CAS  Google Scholar 

  38. Rosentritt M, Huber C, Strasser T, Schmid A (2021) Investigating the mechanical and optical properties of novel Urethandimethacrylate (UDMA) and Urethanmethacrylate (UMA) based rapid prototyping materials. Dent Mater 37:1584–1591. https://doi.org/10.1016/j.dental.2021.08.009

    Article  CAS  PubMed  Google Scholar 

  39. Kanie T, Kadokawa A, Arikawa H, Fujii K, Ban S (2010) Flexural properties of ethyl or methyl methacrylate-UDMA blend polymers. Dent Mater J 29:575–581. https://doi.org/10.4012/dmj.2010-045

    Article  CAS  PubMed  Google Scholar 

  40. Chen X, Gao C, Jiang J, Wu Y, Zhu P, Chen G (2019) 3D printed porous PLA/nHA composite scaffolds with enhanced osteogenesis and osteoconductivity in vivo for bone regeneration. Biomed Mater 14:065003. https://doi.org/10.1088/1748-605X/ab388d

    Article  CAS  PubMed  Google Scholar 

  41. Clifton W, Nottmeier E, Damon A, Dove C, Chen SG, Pichelman M (2019) A feasibility study for the production of three-dimensional-printed spine models using simultaneously extruded thermoplastic polymers. Cureus 11:e4440. https://doi.org/10.7759/cureus.4440

    Article  PubMed  PubMed Central  Google Scholar 

  42. Elsawy MA, Kim KH, Park JW, Deep A (2017) Hydrolytic degradation of polylactic acid (PLA) and its composites. Renew Sust Energ Rev 79:1346–1352

    Article  CAS  Google Scholar 

  43. Molinero-Mourelle P, Canals S, Gómez-Polo M, Solá-Ruiz M, del Río J, Highsmith AV (2018) Polylactic acid as a material for three-dimensional printing of provisional restorations. Int J Prosthodont 31:349–350. https://doi.org/10.11607/ijp.5709

    Article  PubMed  Google Scholar 

  44. Nampitch T (2021) Mechanical, thermal and morphological properties of polylactic acid/natural rubber/bagasse fiber composite foams. Resul Mater 12:100225. https://doi.org/10.1016/j.rinma.2021.100225

    Article  CAS  Google Scholar 

  45. Ma Z, Li X, Jia X, Bai J, Jiang X (2016) Folate-conjugated polylactic acid-silica hybrid nanoparticles as degradable carriers for targeted drug delivery, on-demand release and simultaneous self-clearance. Chempluschem 81:652–659. https://doi.org/10.1002/cplu.201600100

    Article  CAS  PubMed  Google Scholar 

  46. Tan H, Zhang Y, Sun L, Sun Y, Dang H, Yang Y et al (2021) Preparation of nano sustained-release fertilizer using natural degradable polymer polylactic acid by coaxial electrospinning. Int J Biol Macromol 193:903–914. https://doi.org/10.1016/j.ijbiomac.2021.10.181

    Article  CAS  PubMed  Google Scholar 

  47. Prajapati SK, Jain A, Jain A, Jain S (2019) Biodegradable polymers and constructs: a novel approach in drug delivery. Eur Polym J 120:109191–109207. https://doi.org/10.1016/j.eurpolymj.2019.08.018

    Article  CAS  Google Scholar 

  48. Körpınar B, Yayayürük AE, Yayayürük O, Akat H (2021) Thiol-ended polycaprolactone: synthesis, preparation and use in Pb (II) and Cd (II) removal from water samples. Mater Today Commun 29:102908. https://doi.org/10.1016/j.mtcomm.2021.102908

    Article  CAS  Google Scholar 

  49. Nguyen TN, Rangel A, Migonney V (2022) Correlating degradation of functionalized polycaprolactone fibers and fibronectin adsorption using atomic force microscopy. Polym Degrad Stabil 195:109788. https://doi.org/10.1016/j.polymdegradstab.2021.109788

    Article  CAS  Google Scholar 

  50. Ding J, Colegrove P, Mehnen J, Williams S, Wang F, Almeida OS (2014) A computationally efficient finite element model of wire and arc additive manufacture. Int J Adv Manuf Technol 70:227–236. https://doi.org/10.1007/s00170-013-5261-x

    Article  Google Scholar 

  51. Pérez-Castillo JL, Cuan-Urquizo E, Roman-Flores A, Olvera-Silva O, Romero-Muñoz V, Gómez-Espinoza A et al (2021) Curved layered fused filament fabrication: an overview. Addit Manuf 47:102354. https://doi.org/10.1016/j.addma.2021.102354

    Article  Google Scholar 

  52. Rebong RE, Stewart KT, Utreja A, Ghoneima AA (2018) Accuracy of three-dimensional dental resin models created by fused deposition modeling, stereolithography, and Polyjet prototype technologies: a comparative study. Angle Orthod 88:363–369. https://doi.org/10.2319/071117-460.1

    Article  PubMed  PubMed Central  Google Scholar 

  53. Singh S, Singh G, Prakash C, Ramakrishna S (2020) Current status and future directions of fused filament fabrication. J Manuf Process 55:288–306. https://doi.org/10.1016/j.jmapro.2020.04.049

    Article  Google Scholar 

  54. Shaqour B, Samaro A, Verleije B, Beyers K, Vervaet C, Cos P (2020) Production of drug delivery systems using fused filament fabrication: a systematic review. Pharmaceutics 12:517. https://doi.org/10.3390/pharmaceutics12060517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Bona AD, Cantelli V, Britto VT, Collares KF, Stansbury JW (2021) 3D printing restorative materials using a stereolithographic technique: a systematic review. Dent Mater 37:336–350. https://doi.org/10.1016/j.dental.2020.11.030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Khorsandi D, Fahimipour A, Abasian P, Saber SS, Seyedi M, Ghanavati S et al (2021) 3D and 4D printing in dentistry and maxillofacial surgery: printing techniques, materials, and applications. Acta Biomater 122:26–49. https://doi.org/10.1016/j.actbio.2020.12.044

    Article  CAS  PubMed  Google Scholar 

  57. Zhang Y, Kumar P, Lv S, Xiong D, Zao H, Cai Z et al (2021) Recent advances in 3D bioprinting of vascularized tissues. Mater Des 199:109398. https://doi.org/10.1016/j.matdes.2020.109398

    Article  CAS  Google Scholar 

  58. He C, Cao Y, Ma C, Liu X, Hou F, Yan L (2021) Digital light processing of complex-shaped 3D-zircon (ZrSiO4) ceramic components from a photocurable polysiloxane/ZrO2 slurry. Ceram Int 47:32905–33291. https://doi.org/10.1016/j.ceramint.2021.08.189

    Article  CAS  Google Scholar 

  59. Meng X, Yang W, Deng X (2021) Research on 3D printing process and properties of diamond–resin composites based on digital light processing. Diam Relat Mat 120:108715. https://doi.org/10.1016/j.diamond.2021.108715

    Article  CAS  Google Scholar 

  60. Coppola B, Schmitt J, Lacondemine T, Tardivat C, Montanaro L, Palmero P (2022) Digital Light Processing stereolithography of zirconia ceramics: slurry elaboration and orientation-reliant mechanical properties. J Eur Ceram Soc 42:2974–2982. https://doi.org/10.1016/j.jeurceramsoc.2022.01.024

    Article  CAS  Google Scholar 

  61. Chen T, Wang D, Chen X, Qiu M, Fan Y (2022) Three-dimensional printing of high-flux ceramic membranes with an asymmetric structure via digital light processing. Ceram Int 48:304–312. https://doi.org/10.1016/j.ceramint.2021.09.105

    Article  CAS  Google Scholar 

  62. Zhang Y, Li S, Zhao Y, Duan W, Liu B, Wang T et al (2021) Digital light processing 3D printing of AlSi10Mg powder modified by surface coating. Addit Manuf 39:101897. https://doi.org/10.1016/j.addma.2021.101897

    Article  CAS  Google Scholar 

  63. Tamboli DP, Lee DS (2013) Mechanistic antimicrobial approach of extracellularly synthesized silver nanoparticles against gram positive and gram negative bacteria. J Hazard Mater 260:878–884. https://doi.org/10.1016/j.jhazmat.2013.06.003

    Article  CAS  PubMed  Google Scholar 

  64. Nadernezhad A, Unal S, Khani N, Koc B (2019) Material extrusion-based additive manufacturing of structurally controlled poly(lactic acid)/carbon nanotube nanocomposites. Int J Adv Manuf Technol 102:1–14. https://doi.org/10.1007/s00170-018-03283-9

    Article  Google Scholar 

  65. Liu CH, Chen Y, Yang SY (2021) Topology optimization and prototype of a multimaterial-like compliant finger by varying the infill density in 3D printing. Soft Robot. https://doi.org/10.1089/soro.2020.0212

    Article  PubMed  Google Scholar 

  66. Ye X, Cai D, Ruan X, Cai A (2018) Research on the selective adhesion characteristics of polydimethylsiloxane layer. AIP Adv 8:095004. https://doi.org/10.1063/1.5041867

    Article  CAS  Google Scholar 

  67. Chang Y, Cheng T, Shih YJ, Lee KR, Lai JY (2008) Biofouling-resistance expanded poly(tetrafluoroethylene) membrane with a hydrogel-like layer of surfaceimmobilized poly(ethylene glycol) methacrylate for human plasma protein repulsions. J Membr Sci 323:77–84. https://doi.org/10.1016/j.memsci.2008.06.023

    Article  CAS  Google Scholar 

  68. Temmen M, Ochedowski O, Schleberger M, Reichling M, Bollmann TRJ (2014) Hydration layers trapped between graphene and a hydrophilic substrate. New J Phys 16:053039. https://doi.org/10.1088/1367-2630/16/5/053039

    Article  CAS  Google Scholar 

  69. Ramkumar MC, Pandiyaraj KN, Padmanabhan PVA, Cools P, De Geyter N, Morent R et al (2017) Atmospheric pressure nonthermal plasma assisted polymerization of poly (ethylene glycol) methylether methacrylate (PEGMA) on low density polyethylene (LDPE) films for enhancement of biocompatibility. Surf Coat Technol 329:55–67. https://doi.org/10.1016/j.surfcoat.2017.09.020

    Article  CAS  Google Scholar 

  70. Shen X, Liu P, Xia S, Liu J, Wang R, Zhao H, Liu Q (2019) Anti-fouling and anti-bacterial modification of poly(vinylidene fluoride) membrane by blending with the capsaicin-based copolymer. Polymers 11:323. https://doi.org/10.3390/polym11020323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Zhao Y, Fina A, Venturello A, Geobaldo F (2013) Effects of gas atmospheres on poly(lactic acid) film in acrylic acid plasma treatment. Appl Surf Sci 283:181–187. https://doi.org/10.1016/j.apsusc.2013.06.078

    Article  CAS  Google Scholar 

  72. Mangal U, Seo JY, Yu J, Kwon JS, Choi SH (2020) Incorporating aminated nanodiamonds to improve the mechanical properties of 3D-printed resin-based biomedical appliances. Nanomaterials 10(5):827. https://doi.org/10.3390/nano10050827

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Lim DP, Lee JY, Lim DS, Ann SG, Lyo IW (2009) Effect of reinforcement particle size on the tribological properties of nano-diamond filled polytetrafluoroethylene based coating. J Nanosci Nanotechnol 9:4197–4201. https://doi.org/10.1166/jnn.2009.m31

    Article  CAS  PubMed  Google Scholar 

  74. Shim JS, Kim JE, Jeong SH, Choi YJ, Ryu JJ (2020) Printing accuracy, mechanical properties, surface characteristics, and microbial adhesion of 3D-printed resins with various printing orientations. J Prosthet Dent 124:468–475. https://doi.org/10.1016/j.prosdent.2019.05.034

    Article  CAS  PubMed  Google Scholar 

  75. Karami P, Khasraghi S, Hashemi M, Rabiei S, Shojaei A (2019) Polymer/ nanodiamond composites-a comprehensive review from synthesis and fabrication to properties and applications. Adv Colloid Interface Sci 269:122–151. https://doi.org/10.1016/j.cis.2019.04.006

    Article  CAS  PubMed  Google Scholar 

  76. Kubacka A, Ferrer M, Cerrada ML, Serrano C, Sánchez-Chaves M, Fernández-García M et al (2009) Boosting TiO2-anatase antimicrobial activity: polymer- oxide thin films. Appl Catal B Environ 89:441–447. https://doi.org/10.1016/j.apcatb.2009.01.002

    Article  CAS  Google Scholar 

  77. Kubacka A, Muñoz-Batista MJ, Ferrer M, Fernández-García M (2013) UV and visible light optimization of anatase TiO2 antimicrobial properties: surface deposition of metal and oxide (Cu, Zn, Ag) species. Appl Catal B Environ 140:680–690. https://doi.org/10.1016/j.apcatb.2013.04.077

    Article  CAS  Google Scholar 

  78. Turnbull G, Clarke J, Picard F, Riches P, Jia L, Han F, Li B, Shu W (2018) 3D bioactive composite scaffolds for bone tissue engineering. Bioact Mater 3:278–314. https://doi.org/10.1016/j.bioactmat.2017.10.001

    Article  PubMed  Google Scholar 

  79. Li G, Wang L, Pan W, Yang F, Jiang W, Wu X et al (2016) In vitro and in vivo study of additive manufactured porous Ti6Al4V scaffolds for repairing bone defects. Sci Rep 6:34072. https://doi.org/10.1038/srep34072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Zhang Y, Wang P, Mao H, Zhang Y, Zheng L, Yu P, Guo Z, Li L, Jiang Q (2021) PEGylated gold nanoparticles promote osteogenic differentiation in in vitro and in vivo systems. Mater Des 197:109231. https://doi.org/10.1016/j.matdes.2020.109231

    Article  CAS  Google Scholar 

  81. Holtz RD, Lima BA, Filho AGS, Brocchi M, Alves OL (2012) Nanostructured silver vanadate as a promising antibacterial additive to water-based paints. Nanomedicine 8:935–940. https://doi.org/10.1016/j.nano.2011.11.012

    Article  CAS  PubMed  Google Scholar 

  82. Mcguinness WA, Malachowa N, DeLeo FR (2017) Vancomycin resistance in staphylococcus aureus. Yale J Biol Med 90:269–281

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Allocati N, Masulli M, Alexeyev MF, Di Ilio C (2013) Escherichia coli in Europe: an overview. Int J Environ Res Public Health 10:6235–6254. https://doi.org/10.3390/ijerph10126235

    Article  PubMed  PubMed Central  Google Scholar 

  84. Ferreira I, Vidal CL, Botelho AL, Ferreira OS, Valente MLC, Schiavon MA et al (2020) Effect of nanomaterial incorporation on the mechanical and microbiological properties of dental porcelain. J Prosthet Dent 123:529.e1-529.e5. https://doi.org/10.1016/j.prosdent.2019.10.012

    Article  CAS  PubMed  Google Scholar 

  85. da Nóbrega D, Alves AF, Monteiro M, Andrade PN, Lazarini JG, Abílio GMF, Guerra FQS et al (2020) Docking prediction, antifungal activity, anti-biofilm effects on candida spp., and toxicity against human cells of Cinnamaldehyde. Molecules 25(24):5969. https://doi.org/10.3390/molecules25245969

    Article  CAS  Google Scholar 

  86. Kleinschmidt S, Huygens F, Faoagali J, Rathnayake IU, Hafner LM (2015) Staphylococcus epidermidis as a cause of bacteremia. Future Microbiol 10:1859–1879. https://doi.org/10.2217/fmb.15.98

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andréa Cândido dos Reis.

Ethics declarations

Conflict of interest

The authors report no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Campos, M.R., Botelho, A.L. & dos Reis, A.C. Antimicrobial incorporation on 3D-printed polymers used as potential dental materials and biomaterials: a systematic review of the state of the art. Polym. Bull. 80, 7313–7340 (2023). https://doi.org/10.1007/s00289-022-04427-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-022-04427-4

Navigation