Skip to main content

Advertisement

Log in

Review featuring the use of inorganic nano-structured material for anti-microbial properties in textile

  • Review Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Infectious diseases are a leading cause of mortality around the world. Pathogenic bacteria have evolved bacterial resistance as a result of –lactamase production. The World Health Organization’s (WHO) new GLASS (Global Antimicrobial Surveillance System) revealed in 2018 that antibiotic resistance is widely spread among 500,000 sick people in 22 countries infected with drug-resistant bacteria. Among billions of fungus, 300 fungi poses serious threat to human health. Due to prevalence of infectious diseases, more focus has been given on the nanoparticles application in various fields of life including textile industry, biomedicine, cosmetology, self-cleaning, antibiotics, drug delivery system, UV defense, removing impurities, water and air filtration system. Nanoparticles shows potency due to their small size, high penetration rate and cell damaging potentiality via different mechanisms. Nanoparticles are used in textiles to eliminate undesired effects such as degradation of fabrics, production of unwanted odor and potential for health risks. Natural fibers are susceptible to the accumulation, multiplication and propagation of micro-organisms due to large surface area, moisture, heat and body secretions providing ideal habitat for micro-organisms growth when in contact with human body. Consequently, variety of textiles are coated, with nanoparticles to protect the wearers from irritation and skin allergies, able to withstand the washing, drying and leaching. Green synthesis of nanoparticles is a simple, cost effective and ecofriendly approach. Nanoparticles ranges from the nano-metals like silver, copper, gold, palladium and graphene nanoparticles to the metal oxides including zinc oxide, titanium oxide, copper oxide, graphene oxide, calcium oxide and magnesium oxides to the carbon nanotubes and nano-clay. Gold nanoparticles cause the oxidative stress in the cytoplasm, which leads to microbe’s death. Copper nanoparticles shows antifungal activities for food related pathogens. Copper oxide nanoparticles shows antibacterial effect on Staphylococcus aureus by releasing the Cu+2 ions which triggers the reactive oxygen species production. Copper is used as water purifier and anti-fouling agent. Introduction of copper into fabrics and other items provide them biocidal effects. Copper is vital for aerobic organisms, though excessive copper ions inhibit microbial development via enzyme deactivation, protein functional group disruption, and plasma membrane damage. Zinc oxide nanoparticles shows biocompatibility, stability, antimicrobial property, and harmless to human cells. Zinc oxide nanoparticles strongly attack the micro-organisms. Nano-silver is applied against different strains of bacteria such as Staphylococcus aureus, Klebsiella pneumonia, Bacillus subtilis, Streptococcus zooepidemicus, Escherichia coli, and Enterobacter aerogenes. Bacteria’s surface is negatively charged while graphene is positively charged and graphene family nanomaterials act as bridge to transport the charge from graphene to bacteria. CaO nanoparticles functions against gram-positive, gram-negative bacteria and yeast. It is widely used against microbes in food items. This review paper emphasized on the characteristics and utilization of the inorganic nano-structured materials with anti-microbial properties in textiles. Nanoparticles exhibits best results against bacteria and fungi. Nanomaterials are promising materials because they can be made to do numerous tasks at the same time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Din MI et al (2018) Single step green synthesis of stable nickel and nickel oxide nanoparticles from Calotropis gigantea: catalytic and antimicrobial potentials. Environmental Nanotechnology, Monitoring & Management 9:29–36

    Google Scholar 

  2. Yuliarto B et al (2019) Green synthesis of metal oxide nanostructures using naturally occurring compounds for energy, environmental, and bio-related applications. New J Chem 43(40):15846–15856

    CAS  Google Scholar 

  3. Ali, A. and M.B. Malik, Causality issues in orientation control of an under-actuated drill machine. IJNCAA, 2016: p. 49.

  4. Ali M et al (2020) Facile single step preparations of phyto-nanoparticles of iron in Calotropis procera leaf extract to evaluate their antifungal potential against Alternaria alternata. Current Plant Biology 23:100157

    Google Scholar 

  5. Akbar, M., et al., Mycosynthesized Fe2O3 nanoparticles diminish brown rot of apple whilst maintaining composition and pertinent organoleptic properties. Journal of Applied Microbiology, 2022.

  6. Ren X et al (2008) Antimicrobial coating of an N-halamine biocidal monomer on cotton fibers via admicellar polymerization. Colloids Surf, A 317(1–3):711–716

    CAS  Google Scholar 

  7. Dastjerdi R, Montazer M, Shahsavan S (2009) A new method to stabilize nanoparticles on textile surfaces. Colloids Surf, A 345(1–3):202–210

    CAS  Google Scholar 

  8. Dastjerdi R et al (2010) Investigating the production and properties of Ag/TiO2/PP antibacterial nanocomposite filament yarns. The Journal of The Textile Institute 101(3):204–213

    CAS  Google Scholar 

  9. Studer H (1997) Antimicrobial protection for polyolefine fibers. Chem Fibers Int 47(5):373–373

    CAS  Google Scholar 

  10. Saleem H, Zaidi SJ (2020) Sustainable use of nanomaterials in textiles and their environmental impact. Materials 13(22):5134

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Giannossa LC et al (2013) Metal nanoantimicrobials for textile applications. Nanotechnol Rev 2(3):307–331

    CAS  Google Scholar 

  12. Jia L, Huang X, Tao Q (2019) Enhanced hydrophilic and antibacterial efficiencies by the synergetic effect TiO2 nanofiber and graphene oxide in cellulose acetate nanofibers. Int J Biol Macromol 132:1039–1043

    CAS  PubMed  Google Scholar 

  13. Paul S, Basak S, Ali W (2019) Zinc Stannate Nanostructure: Is It a New Class of Material for Multifunctional Cotton Textiles? ACS Omega 4(26):21827–21838

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Emam HE et al (2020) Acacia gum versus pectin in fabrication of catalytically active palladium nanoparticles for dye discoloration. Int J Biol Macromol 156:829–840

    CAS  PubMed  Google Scholar 

  15. Ahmed HB, Saad N, Emam HE (2021) Recyclable palladium based nano-catalytic laborer encaged within bio-granules for dye degradation. Surfaces and Interfaces 25:101175

    CAS  Google Scholar 

  16. Du L et al (2019) Electrospun composite nanofibre fabrics containing green reduced Ag nanoparticles as an innovative type of antimicrobial insole. RSC Adv 9(4):2244–2251

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Zhang Y-H et al (2020) Impact of adding glucose-coated water-soluble silver nanoparticles to the silkworm larval diet on silk protein synthesis and related properties. J Biomater Sci Polym Ed 31(3):376–393

    CAS  PubMed  Google Scholar 

  18. Wang Q et al (2016) Feeding single-walled carbon nanotubes or graphene to silkworms for reinforced silk fibers. Nano Lett 16(10):6695–6700

    CAS  PubMed  Google Scholar 

  19. Wu G et al (2017) Robust composite silk fibers pulled out of silkworms directly fed with nanoparticles. Int J Biol Macromol 104:533–538

    CAS  PubMed  Google Scholar 

  20. Sadeghi-Kiakhani M, Hashemi E, Gharanjig K (2020) Treating wool fibers with chitosan-based nano-composites for enhancing the antimicrobial properties. Appl Nanosci 10(4):1219–1229

    CAS  Google Scholar 

  21. Emam HE, Ahmed HB, Abdelhameed RM (2021) Melt intercalation technique for synthesis of hetero-metallic@ chitin bio-composite as recyclable catalyst for prothiofos hydrolysis. Carbohyd Polym 266:118163

    CAS  Google Scholar 

  22. Emam HE, Ahmed HB (2019) Comparative study between homo-metallic & hetero-metallic nanostructures based agar in catalytic degradation of dyes. Int J Biol Macromol 138:450–461

    CAS  PubMed  Google Scholar 

  23. Chiu C-M et al (2018) Self-powered active antibacterial clothing through hybrid effects of nanowire-enhanced electric field electroporation and controllable hydrogen peroxide generation. Nano Energy 53:1–10

    CAS  Google Scholar 

  24. Ogunsona EO et al (2020) Engineered nanomaterials for antimicrobial applications: A review. Appl Mater Today 18:100473

    Google Scholar 

  25. Bower C et al (2002) Protein antimicrobial barriers to bacterial adhesion: in vitro and in vivo evaluation of nisin-treated implantable materials. Colloids Surf, B 25(1):81–90

    CAS  Google Scholar 

  26. X.H. Ren, L.K., H.B. Kocer, C.Y. Zhu, S.D. Worley, R.M. Broughton, T.S. Huang,, et al., Antimicrobial coating of an N-halamine biocidal monomer on cotton fibers via admicellar polymerization. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2008. 317(1–3): p. 711–716.

  27. Macken C (2003) FIBERS-Bioactive fibers–Benefits to mankind. Chem Fibers Int 53(1):39–41

    CAS  Google Scholar 

  28. Yang JM et al (2003) Wettability and antibacterial assessment of chitosan containing radiation-induced graft nonwoven fabric of polypropylene-g-acrylic acid. J Appl Polym Sci 90(5):1331–1336

    CAS  Google Scholar 

  29. Schartel B et al (2005) Fire behaviour of polyamide 6/multiwall carbon nanotube nanocomposites. Eur Polymer J 41(5):1061–1070

    CAS  Google Scholar 

  30. Xue P et al (2007) Electrically conductive yarns based on PVA/carbon nanotubes. Compos Struct 78(2):271–277

    Google Scholar 

  31. Perelshtein I et al (2008) Sonochemical coating of silver nanoparticles on textile fabrics (nylon, polyester and cotton) and their antibacterial activity. Nanotechnology 19(24):245705

    PubMed  Google Scholar 

  32. Kim HS et al (2007) Preparation and characterization of poly [(butylene succinate)-co-(butylene adipate)]/carbon nanotube-coated silk fiber composites. Polym Int 56(8):1035–1039

    CAS  Google Scholar 

  33. Apul OG, Karanfil T (2015) Adsorption of synthetic organic contaminants by carbon nanotubes: a critical review. Water Res 68:34–55

    CAS  PubMed  Google Scholar 

  34. Kang S et al (2007) Single-walled carbon nanotubes exhibit strong antimicrobial activity. Langmuir 23(17):8670–8673

    CAS  PubMed  Google Scholar 

  35. Kang S et al (2008) Antibacterial effects of carbon nanotubes: size does matter! Langmuir 24(13):6409–6413

    CAS  PubMed  Google Scholar 

  36. Yen C-Y et al (2008) The effects of synthesis procedures on the morphology and photocatalytic activity of multi-walled carbon nanotubes/TiO2 nanocomposites. Nanotechnology 19(4):045604

    PubMed  Google Scholar 

  37. Lee S-H (2004) Photocatalytic nanocomposites based on TiO2 and carbon nanotubes. University of Florida Gainesville, FL

    Google Scholar 

  38. Chen L et al (2005) Preparation and characterization of CNTs–TiO2 composites. Powder Technol 154(1):70–72

    CAS  Google Scholar 

  39. Oh W-C, Jung A-R, Ko W-B (2009) Characterization and relative photonic efficiencies of a new nanocarbon/TiO2 composite photocatalyst designed for organic dye decomposition and bactericidal activity. Mater Sci Eng, C 29(4):1338–1347

    CAS  Google Scholar 

  40. Leung, Y.H., et al. ZnO nanostructures prepared from ZnO: CNT mixtures. in Nanophotonic Materials. 2004. International Society for Optics and Photonics.

  41. Chen M et al (2003) Synthesis and characterization of SnO–carbon nanotube composite as anode material for lithium-ion batteries. Mater Res Bull 38(5):831–836

    CAS  Google Scholar 

  42. Han W-Q, Zettl A (2003) Coating single-walled carbon nanotubes with tin oxide. Nano Lett 3(5):681–683

    CAS  Google Scholar 

  43. Zhao L, Gao L (2004) Novel in situ synthesis of MWNTs-hydroxyapatite composites. Carbon (New York, NY) 42(2):423–426

    CAS  Google Scholar 

  44. Ma R et al (1998) Processing and properties of carbon nanotubes–nano-SiC ceramic. J Mater Sci 33(21):5243–5246

    CAS  Google Scholar 

  45. Seeger T et al (2001) SiOx-coating of carbon nanotubes at room temperature. Chem Phys Lett 339(1–2):41–46

    CAS  Google Scholar 

  46. Hernadi K et al (2003) Synthesis of MWNT-based composite materials with inorganic coating. Acta Mater 51(5):1447–1452

    CAS  Google Scholar 

  47. Rastogi, A. and K. Pal, Polymer Matrix Nanocomposites: Recent Advancements and Applications, in Hybrid Nanocomposites. 2019, Jenny Stanford Publishing. p. 167–214.

  48. Kojima Y et al (1993) Synthesis of nylon 6–clay hybrid by montmorillonite intercalated with ϵ-caprolactam. J Polym Sci, Part A: Polym Chem 31(4):983–986

    CAS  Google Scholar 

  49. Pavliková S et al (2003) Fiber spinning from poly (propylene)–organoclay nanocomposite. J Appl Polym Sci 89(3):604–611

    Google Scholar 

  50. Wilson M (2003) Clay mineralogical and related characteristics of geophagic materials. J Chem Ecol 29(7):1525–1547

    CAS  PubMed  Google Scholar 

  51. Williams, L., et al., Killer clays. Natural antibacterial clay minerals. Mineralogical Society Bulletin, 2004. 139: p. 3–8.

  52. Haydel SE, Remenih CM, Williams LB (2008) Broad-spectrum in vitro antibacterial activities of clay minerals against antibiotic-susceptible and antibiotic-resistant bacterial pathogens. J Antimicrob Chemother 61(2):353–361

    CAS  PubMed  Google Scholar 

  53. Seckin T et al (1997) Preparation and characterization of a clay-polyvinylpyridinium matrix for the removal of bacterial cells from water. J Mater Sci 32(22):5993–5999

    CAS  Google Scholar 

  54. Park S-H et al (2006) Loading of gold nanoparticles inside the DPPC bilayers of liposome and their effects on membrane fluidities. Colloids Surf, B 48(2):112–118

    CAS  Google Scholar 

  55. Grace AN, Pandian K (2007) Antibacterial efficacy of aminoglycosidic antibiotics protected gold nanoparticles—A brief study. Colloids Surf, A 297(1–3):63–70

    CAS  Google Scholar 

  56. Wang H et al (2013) Graphene-based materials: fabrication, characterization and application for the decontamination of wastewater and wastegas and hydrogen storage/generation. Adv Coll Interface Sci 195:19–40

    Google Scholar 

  57. Ahmed HB (2019) Recruitment of various biological macromolecules in fabrication of gold nanoparticles: overview for preparation and applications. Int J Biol Macromol 140:265–277

    CAS  PubMed  Google Scholar 

  58. Emam HE (2019) Arabic gum as bio-synthesizer for Ag–Au bimetallic nanocomposite using seed-mediated growth technique and its biological efficacy. J Polym Environ 27(1):210–223

    CAS  Google Scholar 

  59. Emam HE et al (2020) Emerging use of homogenic and heterogenic nano-colloids synthesized via size-controllable technique in catalytic potency. J Polym Environ 28(2):553–565

    CAS  Google Scholar 

  60. Ahmed HB et al (2019) Hydroxyethyl cellulose for spontaneous synthesis of antipathogenic nanostructures:(Ag & Au) nanoparticles versus Ag-Au nano-alloy. Int J Biol Macromol 128:214–229

    CAS  PubMed  Google Scholar 

  61. Emam HE et al (2020) Metal-dependent nano-catalysis in reduction of aromatic pollutants. Environ Sci Pollut Res 27(6):6459–6475

    CAS  Google Scholar 

  62. Ahmed HB, Abdel-Mohsen A, Emam HE (2016) Green-assisted tool for nanogold synthesis based on alginate as a biological macromolecule. RSC Adv 6(78):73974–73985

    CAS  Google Scholar 

  63. Yun G et al (2018) Synthesis of metal nanoparticles in metal-phenolic networks: catalytic and antimicrobial applications of coated textiles. Adv Healthcare Mater 7(5):1700934

    Google Scholar 

  64. Esteban-Cubillo A et al (2006) Antibacterial activity of copper monodispersed nanoparticles into sepiolite. J Mater Sci 41(16):5208–5212

    CAS  Google Scholar 

  65. Le Pape H et al (2002) Evaluation of the anti-microbial properties of an activated carbon fibre supporting silver using a dynamic method. Carbon 40(15):2947–2954

    Google Scholar 

  66. Wei Q et al (2008) Preparation and characterization of copper nanocomposite textiles. J Ind Text 37(3):275–283

    CAS  Google Scholar 

  67. Hsueh Y-H, Tsai P-H, Lin K-S (2017) Ph-dependent antimicrobial properties of copper oxide nanoparticles in staphylococcus aureus. Int J Mol Sci 18(4):793

    PubMed  PubMed Central  Google Scholar 

  68. Shanmugam S, Gopal B (2014) Copper substituted hydroxyapatite and fluorapatite: synthesis, characterization and antimicrobial properties. Ceram Int 40(10):15655–15662

    CAS  Google Scholar 

  69. Xiong L et al (2015) Morphology-dependent antimicrobial activity of Cu/Cu x O nanoparticles. Ecotoxicology 24(10):2067–2072

    CAS  PubMed  Google Scholar 

  70. Hassabo AA et al (2022) Anticancer effects of biosynthesized Cu2O nanoparticles using marine yeast. Biocatal Agric Biotechnol 39:102261

    CAS  Google Scholar 

  71. Hoseinnejad M, Jafari SM, Katouzian I (2018) Inorganic and metal nanoparticles and their antimicrobial activity in food packaging applications. Crit Rev Microbiol 44(2):161–181

    CAS  PubMed  Google Scholar 

  72. Behnajady M, Modirshahla N, Hamzavi R (2006) Kinetic study on photocatalytic degradation of CI Acid Yellow 23 by ZnO photocatalyst. J Hazard Mater 133(1–3):226–232

    CAS  PubMed  Google Scholar 

  73. Li Q, Chen SL, Jiang WC (2007) Durability of nano ZnO antibacterial cotton fabric to sweat. J Appl Polym Sci 103(1):412–416

    CAS  Google Scholar 

  74. Zhou G et al (2008) Synthesis, characterization, and novel nanohydroxyapatite/zinc antibacterial activities of a oxide complex. J Biomed Mater Res, Part A 85(4):929–937

    Google Scholar 

  75. El-Naggar ME, Shaarawy S, Hebeish A (2018) Multifunctional properties of cotton fabrics coated with in situ synthesis of zinc oxide nanoparticles capped with date seed extract. Carbohyd Polym 181:307–316

    CAS  Google Scholar 

  76. Fouda A et al (2018) In-Vitro cytotoxicity, antibacterial, and UV protection properties of the biosynthesized Zinc oxide nanoparticles for medical textile applications. Microb Pathog 125:252–261

    CAS  PubMed  Google Scholar 

  77. Pulit-Prociak J et al (2016) Functionalization of textiles with silver and zinc oxide nanoparticles. Appl Surf Sci 385:543–553

    CAS  Google Scholar 

  78. Rai M, Yadav A, Gade A (2009) Silver nanoparticles as a new generation of antimicrobials. Biotechnol Adv 27(1):76–83

    CAS  PubMed  Google Scholar 

  79. Nersisyan H et al (2003) A new and effective chemical reduction method for preparation of nanosized silver powder and colloid dispersion. Mater Res Bull 38(6):949–956

    CAS  Google Scholar 

  80. Jeong SH, Yeo SY, Yi SC (2005) The effect of filler particle size on the antibacterial properties of compounded polymer/silver fibers. J Mater Sci 40(20):5407–5411

    CAS  Google Scholar 

  81. Chang C-C et al (2006) Photocatalytic properties of nanocrystalline TiO2 thin film with Ag additions. Thin Solid Films 494(1–2):274–278

    CAS  Google Scholar 

  82. Yu D-G (2007) Formation of colloidal silver nanoparticles stabilized by Na+–poly (γ-glutamic acid)–silver nitrate complex via chemical reduction process. Colloids Surf, B 59(2):171–178

    CAS  Google Scholar 

  83. Ayyad O et al (2010) From silver nanoparticles to nanostructures through matrix chemistry. J Nanopart Res 12(1):337–345

    CAS  Google Scholar 

  84. Courrol, L.C., F.R. de Oliveira Silva, and L. Gomes, A simple method to synthesize silver nanoparticles by photo-reduction. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2007. 305(1–3): p. 54–57.

  85. Xie Y, Ye R, Liu H (2006) Synthesis of silver nanoparticles in reverse micelles stabilized by natural biosurfactant. Colloids Surf, A 279(1–3):175–178

    CAS  Google Scholar 

  86. Sathishkumar M et al (2009) Cinnamon zeylanicum bark extract and powder mediated green synthesis of nano-crystalline silver particles and its bactericidal activity. Colloids Surf, B 73(2):332–338

    CAS  Google Scholar 

  87. Shahverdi AR et al (2007) Rapid synthesis of silver nanoparticles using culture supernatants of Enterobacteria: a novel biological approach. Process Biochem 42(5):919–923

    CAS  Google Scholar 

  88. Ahmed HB, Emam HE (2020) Seeded growth core-shell (Ag–Au–Pd) ternary nanostructure at room temperature for potential water treatment. Polym Testing 89:106720

    CAS  Google Scholar 

  89. Lok C-N et al (2006) Proteomic analysis of the mode of antibacterial action of silver nanoparticles. J Proteome Res 5(4):916–924

    CAS  PubMed  Google Scholar 

  90. Jeong SH, Hwang YH, Yi SC (2005) Antibacterial properties of padded PP/PE nonwovens incorporating nano-sized silver colloids. J Mater Sci 40(20):5413–5418

    CAS  Google Scholar 

  91. Yeo SY, Lee HJ, Jeong SH (2003) Preparation of nanocomposite fibers for permanent antibacterial effect. J Mater Sci 38(10):2143–2147

    CAS  Google Scholar 

  92. Fernández A et al (2009) Preservation of aseptic conditions in absorbent pads by using silver nanotechnology. Food Res Int 42(8):1105–1112

    Google Scholar 

  93. Ilić V et al (2009) Antifungal efficiency of corona pretreated polyester and polyamide fabrics loaded with Ag nanoparticles. J Mater Sci 44(15):3983–3990

    Google Scholar 

  94. Kaur P (1985) Plasmid mediated resistance to silver ions in Escherichia coli. Ind J Med Res 82:122–126

    CAS  Google Scholar 

  95. Kim, J.S., et al., Antimicrobial effects of silver nanoparticles. Nanomedicine: Nanotechnology, Biology and Medicine, 2007. 3(1): p. 95–101.

  96. Potiyaraj P, Kumlangdudsana P, Dubas ST (2007) Synthesis of silver chloride nanocrystal on silk fibers. Mater Lett 61(11–12):2464–2466

    CAS  Google Scholar 

  97. Siddiqi KS, Husen A, Rao RA (2018) A review on biosynthesis of silver nanoparticles and their biocidal properties. Journal of nanobiotechnology 16(1):1–28

    Google Scholar 

  98. Ojha, S., A. Sett, and U. Bora, Green synthesis of silver nanoparticles by Ricinus communis var. carmencita leaf extract and its antibacterial study. Advances in Natural Sciences: Nanoscience and Nanotechnology, 2017. 8(3): p. 035009.

  99. Chen C et al (2012) Silver nanoparticles deposited layered double hydroxide nanoporous coatings with excellent antimicrobial activities. Adv Func Mater 22(4):780–787

    CAS  Google Scholar 

  100. Hassan MM, Sunderland M (2015) Antimicrobial and insect-resist wool fabrics by coating with microencapsulated antimicrobial and insect-resist agents. Prog Org Coat 85:221–229

    CAS  Google Scholar 

  101. Budama L et al (2013) A new strategy for producing antibacterial textile surfaces using silver nanoparticles. Chem Eng J 228:489–495

    CAS  Google Scholar 

  102. Kumar, N. and N. Ibrahim, Nanomaterials for antibacterial textiles. 2015, Elsevier New York.

  103. Radetić M (2013) Functionalization of textile materials with TiO2 nanoparticles. J Photochem Photobiol, C 16:62–76

    Google Scholar 

  104. Ballottin D et al (2017) Antimicrobial textiles: Biogenic silver nanoparticles against Candida and Xanthomonas. Mater Sci Eng, C 75:582–589

    CAS  Google Scholar 

  105. Maillard, J. Bacterial sites for target action. in J Appl Microbiol Symp Suppl. 2002.

  106. Morones J et al (2005) Kouri, JT Ramirez and MJ Yacaman. Nanotechnology 16:2346–2353

    CAS  PubMed  Google Scholar 

  107. Marambio-Jones C, Hoek EM (2010) A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment. J Nanopart Res 12(5):1531–1551

    CAS  Google Scholar 

  108. Lo P-H, Kumar SA, Chen S-M (2008) Amperometric determination of H2O2 at nano-TiO2/DNA/thionin nanocomposite modified electrode. Colloids Surf, B 66(2):266–273

    CAS  Google Scholar 

  109. Zhang Y et al (2005) Functionalized polydiacetylene-glycolipid vesicles interacted with Escherichia coli under the TiO2 colloid. Colloids Surf, B 40(3–4):137–142

    CAS  Google Scholar 

  110. Kanehira K et al (2008) Properties of TiO2–polyacrylic acid dispersions with potential for molecular recognition. Colloids Surf, B 64(1):10–15

    CAS  Google Scholar 

  111. Mahltig B, Haufe H, Böttcher H (2005) Functionalisation of textiles by inorganic sol–gel coatings. J Mater Chem 15(41):4385–4398

    CAS  Google Scholar 

  112. Han K, Yu M (2006) Study of the preparation and properties of UV-blocking fabrics of a PET/TiO2 nanocomposite prepared by in situ polycondensation. J Appl Polym Sci 100(2):1588–1593

    CAS  Google Scholar 

  113. Zhang D et al (2018) Enhanced photocatalytic hydrogen evolution activity of carbon and nitrogen self-doped TiO2 hollow sphere with the creation of oxygen vacancy and Ti3+. Materials today energy 10:132–140

    Google Scholar 

  114. Cermenati L et al (1997) Probing the TiO2 photocatalytic mechanisms in water purification by use of quinoline, photo-fenton generated OH• radicals and superoxide dismutase. J Phys Chem B 101(14):2650–2658

    CAS  Google Scholar 

  115. Verran J et al (2007) Variables affecting the antibacterial properties of nano and pigmentary titania particles in suspension. Dyes Pigm 73(3):298–304

    CAS  Google Scholar 

  116. Park YR, Kim KJ (2005) Structural and optical properties of rutile and anatase TiO2 thin films: Effects of Co doping. Thin Solid Films 484(1–2):34–38

    CAS  Google Scholar 

  117. Weibel A, Bouchet R, Knauth P (2006) Electrical properties and defect chemistry of anatase (TiO2). Solid State Ionics 177(3–4):229–236

    CAS  Google Scholar 

  118. Wang N et al (2006) Electrophoretic deposition and optical property of titania nanotubes films. Thin Solid Films 496(2):649–652

    CAS  Google Scholar 

  119. Alimohammadi S et al (2012) Synthesis and physicochemical characterization of biodegradable PLGA-based magnetic nanoparticles containing amoxicilin. Bull Korean Chem Soc 33(10):3225–3232

    CAS  Google Scholar 

  120. Fu G, Vary PS, Lin C-T (2005) Anatase TiO2 nanocomposites for antimicrobial coatings. J Phys Chem B 109(18):8889–8898

    CAS  PubMed  Google Scholar 

  121. Liou J-W, Chang H-H (2012) Bactericidal effects and mechanisms of visible light-responsive titanium dioxide photocatalysts on pathogenic bacteria. Arch Immunol Ther Exp 60(4):267–275

    CAS  Google Scholar 

  122. Li Y et al (2012) Mechanism of photogenerated reactive oxygen species and correlation with the antibacterial properties of engineered metal-oxide nanoparticles. ACS Nano 6(6):5164–5173

    CAS  PubMed  Google Scholar 

  123. Cai Y, Strømme M, Welch K (2013) Photocatalytic antibacterial effects are maintained on resin-based TiO 2 nanocomposites after cessation of UV irradiation. PLoS ONE 8(10):e75929

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Shah, S.N.A., et al., Hazardous effects of titanium dioxide nanoparticles in ecosystem. Bioinorganic chemistry and applications, 2017. 2017.

  125. Gouda M, Aljaafari A, Al-Omair M (2017) Functional electrospun cellulosic nanofiber mats for antibacterial bandages. Fibers and Polymers 18(12):2379–2386

    CAS  Google Scholar 

  126. Nezamabadi V et al (2020) Biosynthesis and Antibacterial Activity of ZnO Nanoparticles by Artemisia Aucheri Extract. Iran J Biotechnol 18(2):82–91

    Google Scholar 

  127. Loh KP et al (2010) The chemistry of graphene. J Mater Chem 20(12):2277–2289

    CAS  Google Scholar 

  128. Hu X, Zhou Q (2013) Health and ecosystem risks of graphene. Chem Rev 113(5):3815–3835

    CAS  PubMed  Google Scholar 

  129. Kim J, Cote LJ, Huang J (2012) Two dimensional soft material: new faces of graphene oxide. Acc Chem Res 45(8):1356–1364

    CAS  PubMed  Google Scholar 

  130. Liu S et al (2011) Antibacterial activity of graphite, graphite oxide, graphene oxide, and reduced graphene oxide: membrane and oxidative stress. ACS Nano 5(9):6971–6980

    CAS  PubMed  Google Scholar 

  131. Li R et al (2016) Identification and optimization of carbon radicals on hydrated graphene oxide for ubiquitous antibacterial coatings. ACS Nano 10(12):10966–10980

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Nine MJ et al (2017) Interlayer growth of borates for highly adhesive graphene coatings with enhanced abrasion resistance, fire-retardant and antibacterial ability. Carbon 117:252–262

    CAS  Google Scholar 

  133. áde Leon, A., On the antibacterial mechanism of graphene oxide (GO) Langmuir–Blodgett films. Chemical communications, 2015. 51(14): p. 2886–2889.

  134. Zou X et al (2016) Mechanisms of the antimicrobial activities of graphene materials. J Am Chem Soc 138(7):2064–2077

    CAS  PubMed  Google Scholar 

  135. Zhao J et al (2014) Graphene in the aquatic environment: adsorption, dispersion, toxicity and transformation. Environ Sci Technol 48(17):9995–10009

    CAS  PubMed  Google Scholar 

  136. Li J et al (2014) Antibacterial activity of large-area monolayer graphene film manipulated by charge transfer. Sci Rep 4(1):1–8

    Google Scholar 

  137. Tang YJ et al (2007) Charge-associated effects of fullerene derivatives on microbial structural integrity and central metabolism. Nano Lett 7(3):754–760

    CAS  PubMed  Google Scholar 

  138. Panda S et al (2018) Electron transfer directed antibacterial properties of graphene oxide on metals. Adv Mater 30(7):1702149

    Google Scholar 

  139. Chong Y et al (2017) Light-enhanced antibacterial activity of graphene oxide, mainly via accelerated electron transfer. Environ Sci Technol 51(17):10154–10161

    CAS  PubMed  Google Scholar 

  140. Zhou Y et al (2013) Highly stable and dispersive silver nanoparticle–graphene composites by a simple and low-energy-consuming approach and their antimicrobial activity. Small 9(20):3445–3454

    CAS  PubMed  Google Scholar 

  141. Chen S et al (2017) Graphene quantum dot/silver nanoparticle hybrids with oxidase activities for antibacterial application. ACS Biomater Sci Eng 3(3):313–321

    CAS  PubMed  Google Scholar 

  142. Fathalipour S, Mardi M (2017) Synthesis of silane ligand-modified graphene oxide and antibacterial activity of modified graphene-silver nanocomposite. Mater Sci Eng, C 79:55–65

    CAS  Google Scholar 

  143. Kim JD et al (2013) Antibacterial activity and reusability of CNT-Ag and GO-Ag nanocomposites. Appl Surf Sci 283:227–233

    CAS  Google Scholar 

  144. Bao Q, Zhang D, Qi P (2011) Synthesis and characterization of silver nanoparticle and graphene oxide nanosheet composites as a bactericidal agent for water disinfection. J Colloid Interface Sci 360(2):463–470

    CAS  PubMed  Google Scholar 

  145. Tang J et al (2013) Graphene oxide–silver nanocomposite as a highly effective antibacterial agent with species-specific mechanisms. ACS Appl Mater Interfaces 5(9):3867–3874

    CAS  PubMed  Google Scholar 

  146. Song B et al (2016) Antibacterial properties and mechanism of graphene oxide-silver nanocomposites as bactericidal agents for water disinfection. Arch Biochem Biophys 604:167–176

    CAS  PubMed  Google Scholar 

  147. Deng C-H et al (2017) Synthesis, characterization and antibacterial performance of visible light-responsive Ag3PO4 particles deposited on graphene nanosheets. Process Saf Environ Prot 106:246–255

    CAS  Google Scholar 

  148. Shahriary L et al (2015) One-step synthesis of Ag–reduced graphene oxide–multiwalled carbon nanotubes for enhanced antibacterial activities. New J Chem 39(6):4583–4590

    CAS  Google Scholar 

  149. Liu L et al (2011) Facile synthesis of monodispersed silver nanoparticles on graphene oxide sheets with enhanced antibacterial activity. New J Chem 35(7):1418–1423

    CAS  Google Scholar 

  150. de Faria AF et al (2014) Eco-friendly decoration of graphene oxide with biogenic silver nanoparticles: antibacterial and antibiofilm activity. J Nanopart Res 16(2):1–16

    Google Scholar 

  151. Kim B-K, Jo Y-L, Shim J-J (2012) Preparation and antibacterial activity of silver nanoparticles-decorated graphene composites. The Journal of Supercritical Fluids 72:28–35

    Google Scholar 

  152. Liu J et al (2015) Environmentally friendly synthesis of graphene–silver composites with surface-enhanced Raman scattering and antibacterial activity via reduction with l-ascorbic acid/water vapor. New J Chem 39(7):5272–5281

    CAS  Google Scholar 

  153. Sedki M et al (2015) Phytosynthesis of silver–reduced graphene oxide (Ag–RGO) nanocomposite with an enhanced antibacterial effect using Potamogeton pectinatus extract. RSC Adv 5(22):17358–17365

    CAS  Google Scholar 

  154. Haider MS et al (2015) Sequential repetitive chemical reduction technique to study size-property relationships of graphene attached Ag nanoparticle. Solid State Sci 44:1–9

    CAS  Google Scholar 

  155. Sawai J, Shiga H, Kojima H (2001) Kinetic analysis of the bactericidal action of heated scallop-shell powder. Int J Food Microbiol 71(2–3):211–218

    CAS  PubMed  Google Scholar 

  156. Vickers NJ (2017) Animal communication: when i’m calling you, will you answer too? Curr Biol 27(14):R713–R715

    CAS  PubMed  Google Scholar 

  157. Bae D-H et al (2006) Bactericidal effects of CaO (scallop-shell powder) on foodborne pathogenic bacteria. Arch Pharmacal Res 29(4):298–301

    CAS  Google Scholar 

  158. Roy A et al (2013) Antimicrobial activity of CaO nanoparticles. J Biomed Nanotechnol 9(9):1570–1578

    CAS  PubMed  Google Scholar 

  159. Parandhaman T et al (2015) Antimicrobial behavior of biosynthesized silica–silver nanocomposite for water disinfection: A mechanistic perspective. J Hazard Mater 290:117–126

    CAS  PubMed  Google Scholar 

  160. Selvamani T et al (2010) Easy and effective synthesis of micrometer-sized rectangular MgO sheets with very high catalytic activity. Catal Commun 11(6):537–541

    CAS  Google Scholar 

  161. Huang L et al (2005) Controllable preparation of Nano-MgO and investigation of its bactericidal properties. J Inorg Biochem 99(5):986–993

    CAS  PubMed  Google Scholar 

  162. Raghunath A, Perumal E (2017) Metal oxide nanoparticles as antimicrobial agents: a promise for the future. Int J Antimicrob Agents 49(2):137–152

    CAS  PubMed  Google Scholar 

  163. Al-Hazmi F et al (2012) A new large–scale synthesis of magnesium oxide nanowires: structural and antibacterial properties. Superlattices Microstruct 52(2):200–209

    CAS  PubMed  PubMed Central  Google Scholar 

  164. Liu J et al (2008) The non-oxidative dissolution of galena nanocrystals: Insights into mineral dissolution rates as a function of grain size, shape, and aggregation state. Geochim Cosmochim Acta 72(24):5984–5996

    CAS  Google Scholar 

  165. Sandbeck DJ et al (2019) Dissolution of platinum single crystals in acidic medium. ChemPhysChem 20(22):2997–3003

    CAS  PubMed  PubMed Central  Google Scholar 

  166. Sadeghi B et al (2012) Comparison of the anti-bacterial activity on the nanosilver shapes: nanoparticles, nanorods and nanoplates. Adv Powder Technol 23(1):22–26

    CAS  Google Scholar 

  167. Nam, G., et al., The application of bactericidal silver nanoparticles in wound treatment. Nanomaterials and Nanotechnology, 2015. 5(Godište 2015): p. 5–23.

  168. Stoimenov PK et al (2002) Metal oxide nanoparticles as bactericidal agents. Langmuir 18(17):6679–6686

    CAS  Google Scholar 

  169. Yu J et al (2014) Enhanced photocatalytic CO2-reduction activity of anatase TiO2 by coexposed 001 and 101 facets. J Am Chem Soc 136(25):8839–8842

    CAS  PubMed  Google Scholar 

  170. Emam, H.E., Antimicrobial cellulosic textiles based on organic compounds. 3 Biotech, 2019. 9(1): p. 1–14.

  171. Petersen EJ et al (2019) Cause-and-effect analysis as a tool to improve the reproducibility of nanobioassays: four case studies. Chem Res Toxicol 33(5):1039–1054

    PubMed  Google Scholar 

  172. Johnston LJ et al (2020) Key challenges for evaluation of the safety of engineered nanomaterials. NanoImpact 18:100219

    Google Scholar 

  173. Tlili A et al (2017) Chronic exposure effects of silver nanoparticles on stream microbial decomposer communities and ecosystem functions. Environ Sci Technol 51(4):2447–2455

    CAS  PubMed  Google Scholar 

  174. Rosenberg M et al (2018) Rapid in situ assessment of Cu-ion mediated effects and antibacterial efficacy of copper surfaces. Sci Rep 8(1):1–12

    Google Scholar 

  175. Mortimer M et al (2018) Multiwall carbon nanotubes induce more pronounced transcriptomic responses in Pseudomonas aeruginosa PG201 than graphene, exfoliated boron nitride, or carbon black. ACS Nano 12(3):2728–2740

    CAS  PubMed  Google Scholar 

  176. Mortimer M et al (2020) Physical Properties of Carbon Nanomaterials and Nanoceria Affect Pathways Important to the Nodulation Competitiveness of the Symbiotic N2-Fixing Bacterium Bradyrhizobium diazoefficiens. Small 16(21):1906055

    CAS  Google Scholar 

  177. Wang A et al (2020) High-throughput screening for engineered nanoparticles that enhance photosynthesis using mesophyll protoplasts. J Agric Food Chem 68(11):3382–3389

    CAS  PubMed  Google Scholar 

  178. Rasool K et al (2016) Antibacterial activity of Ti3C2T x MXene. ACS Nano 10(3):3674–3684

    CAS  PubMed  Google Scholar 

  179. Arabi Shamsabadi, A., B. Anasori, and M. Soroush, Antimicrobial Mode-of-Action of Colloidal Ti3C2TX MXene Nanosheets. ACS sustainable chemistry & engineering, 2018.

  180. Akhavan O, Ghaderi E (2010) Toxicity of graphene and graphene oxide nanowalls against bacteria. ACS Nano 4(10):5731–5736

    CAS  PubMed  Google Scholar 

  181. Cui H et al (2019) Stimulating antibacterial activities of graphitic carbon nitride nanosheets with plasma treatment. Nanoscale 11(39):18416–18425

    CAS  PubMed  Google Scholar 

  182. Seiler C, Berendonk TU (2012) Heavy metal driven co-selection of antibiotic resistance in soil and water bodies impacted by agriculture and aquaculture. Front Microbiol 3:399

    PubMed  PubMed Central  Google Scholar 

  183. Kuhlbusch TA, Wijnhoven SW, Haase A (2018) Nanomaterial exposures for worker, consumer and the general public. NanoImpact 10:11–25

    Google Scholar 

  184. Spielman-Sun E et al (2018) Effect of silver concentration and chemical transformations on release and antibacterial efficacy in silver-containing textiles. NanoImpact 11:51–57

    Google Scholar 

  185. Liu K et al (2019) A Readily Accessible Functional Nanofibrous Membrane for High-Capacity Immobilization of Ag Nanoparticles and Ultrafast Catalysis Application. Adv Mater Interfaces 6(5):1801617

    Google Scholar 

  186. Wu Z et al (2019) Multifunctional chitosan-based coating with liposomes containing laurel essential oils and nanosilver for pork preservation. Food Chem 295:16–25

    CAS  PubMed  Google Scholar 

  187. Zhang C et al (2019) Graphitic carbon nitride (g-C3N4)-based photocatalysts for water disinfection and microbial control: A review. Chemosphere 214:462–479

    CAS  PubMed  Google Scholar 

  188. Zhang W et al (2019) One-step sonochemical synthesis of a reduced graphene oxide–ZnO nanocomposite with antibacterial and antibiofouling properties. Environ Sci Nano 6(10):3080–3090

    CAS  Google Scholar 

  189. Song, J., et al., Highly flexible, core-shell heterostructured, and visible-light-driven titania-based nanofibrous membranes for antibiotic removal and E. coil inactivation. Chemical Engineering Journal, 2020. 379: p. 122269.

  190. Xia T et al (2011) Decreased dissolution of ZnO by iron doping yields nanoparticles with reduced toxicity in the rodent lung and zebrafish embryos. ACS Nano 5(2):1223–1235

    CAS  PubMed  PubMed Central  Google Scholar 

  191. Naatz H et al (2017) Safe-by-design CuO nanoparticles via Fe-doping, Cu–O bond length variation, and biological assessment in cells and zebrafish embryos. ACS Nano 11(1):501–515

    CAS  PubMed  PubMed Central  Google Scholar 

  192. Ouyang K et al (2020) Towards a better understanding of Pseudomonas putida biofilm formation in the presence of ZnO nanoparticles (NPs): Role of NP concentration. Environ Int 137:105485

    CAS  PubMed  Google Scholar 

  193. Nasrollahzadeh M, Sajjadi M, Tahsili MR (2020) High efficiency treatment of organic/inorganic pollutants using recyclable magnetic N-heterocyclic copper (II) complex and its antimicrobial applications. Sep Purif Technol 238:116403

    CAS  Google Scholar 

  194. Kidd J, Westerhoff P, Maynard AD (2020) Public perceptions for the use of nanomaterials for in-home drinking water purification devices. NanoImpact 18:100220

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anila Iqbal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nawab, R., Iqbal, A., Niazi, F. et al. Review featuring the use of inorganic nano-structured material for anti-microbial properties in textile. Polym. Bull. 80, 7221–7245 (2023). https://doi.org/10.1007/s00289-022-04418-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-022-04418-5

Keywords

Navigation