Skip to main content

Advertisement

Log in

Polymer blends analyzed with confocal laser scanning microscopy

  • Review Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

In this brief overview, we looked at how confocal laser scanning microscopy and Raman imaging can be used to examine solely polymer mixes. The results clearly illustrate that confocal microscopy can evaluate fibers, composites (where nanoparticles are present), mixes, and emulsions, among other things. Confocal imaging can also be used to analyze craze formation, surface interfacial dynamics and instability, compatibilization, droplet break up, polymer blend mixing efficiency, component diffusion rheology, and slip detection. Confocal imaging can be used with acoustic imaging and fluorescence correlation spectroscopy modules to boost characterization depth. We used over 100 references to produce this review, which shows how confocal laser scanning microscopy and Raman imaging spectroscopy might help researchers better comprehend polymer blends.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Abbasi Moud A, Javadi A, Nazockdast H, Fathi A, Altstaedt V (2015) Effect of dispersion and selective localization of carbon nanotubes on rheology and electrical conductivity of polyamide 6 (PA 6), polypropylene (PP), and PA 6/PP nanocomposites. J Polym Sci Part B Polym Phys 53(5):368–378

    CAS  Google Scholar 

  2. Utracki L, Shi Z (1992) Development of polymer blend morphology during compounding in a twin-screw extruder. Part I: droplet dispersion and coalescence—a review. Polym Eng Sci 32(24):1824–1833

    CAS  Google Scholar 

  3. Mannan HA, Mukhtar H, Murugesan T, Nasir R, Mohshim DF, Mushtaq A (2013) Recent applications of polymer blends in gas separation membranes. Chem Eng Technol 36(11):1838–1846

    CAS  Google Scholar 

  4. Muthuraj R, Misra M, Mohanty AK (2018) Biodegradable compatibilized polymer blends for packaging applications: a literature review. J Appl Polym Sci 135(24):45726

    Google Scholar 

  5. Jiang M, Li M, Xiang M, Zhou H (1999) Polymer synthesis polymer-polymer complexation. Adv Polym Sci 146(121):279

    Google Scholar 

  6. Kambour RP, Bendler JT, Bopp RC (1983) Phase behavior of polystyrene, poly (2, 6-dimethyl-1, 4-phenylene oxide), and their brominated derivatives. Macromolecules 16(5):753–757

    CAS  Google Scholar 

  7. Clark E (2003) Effects of 108 days tritium exposure on UHMW-PE, PTFE, and Vespel (R); Savannah River Site (SRS), Aiken, SC (United States)

  8. Clark E, Shanahan KK (2006) Effects of tritium exposure on UHMW-PE, PTFE, and vespel. Department of Energy United States, Washington

    Google Scholar 

  9. Clark EA, Shanahan KL (2007) Effects of tritium on UHMW-PE, PTFE, and vespel [registered trademark] polyimide. Fusion Sci Technol 52(4):1007–1011

    CAS  Google Scholar 

  10. Nagarajan S, Stachurski Z (1982) A study of the PE-PTFE system. I. IR and NMR measurements. J Polym Sci Polym Phys Ed 20(6):989–1000

    CAS  Google Scholar 

  11. Abbasi Moud A, Piette J, Danesh M, Georgiou GC, Hatzikiriakos SG (2022) Apparent slip in colloidal suspensions. J Rheol 66(1):79–90. https://doi.org/10.1122/8.0000302

    Article  CAS  Google Scholar 

  12. Abbasi Moud A, Hatzikiriakos SG (2022) Kaolinite colloidal suspensions under the influence of sodium dodecyl sulfate. Phys Fluids 34(1):013107. https://doi.org/10.1063/5.0082218

    Article  CAS  Google Scholar 

  13. Hoppe C, Mitschker F, Awakowicz P, Kirchheim D, Dahlmann R, de Los Arcos T, Grundmeier G (2018) Adhesion of plasma-deposited silicon oxide barrier layers on PDMS containing polypropylene. Surf Coat Technol 335:25–31

    CAS  Google Scholar 

  14. Prakashan K, Gupta A, Maiti S (2007) Effect of compatibilizer on micromehanical deformations and morphology of dispersion in PP/PDMS blend. J Appl Polym Sci 105(5):2858–2867

    CAS  Google Scholar 

  15. Prakashan K, Gupta A, Maiti S (2009) Crystallization of polypropylene in PP/PDMS/Nano-SiO2 ternary composite. Polym Plast Technol Eng 48(7):775–780

    CAS  Google Scholar 

  16. Zhao Z-Y, Yao W-W, Du R-N, Zhang Q, Fu Q, Qiu Z-H, Yuan S-L (2009) Effect of molecular weight of PDMS on morphology and mechanical properties of PP/PDMS blends. Chin J Polym Sci 27(01):137–143

    CAS  Google Scholar 

  17. Li Y, Shimizu H (2004) Novel morphologies of poly (phenylene oxide)(PPO)/polyamide 6 (PA6) blend nanocomposites. Polymer 45(22):7381–7388

    CAS  Google Scholar 

  18. Cong H, Yu B, Yuan H, Tian C, Yang S (2015) Preparation and characterization of nanocomposites with polyphenylene oxide. Manufacturing of Nanocomposites with Engineering Plastics. Elsevier, Amsterdam, pp 199–224

    Google Scholar 

  19. Zhang Z, Yang M, Cai K, Chen Y, Liu S, Liu W, Liu J (2022) Effect of the flame retardants and glass fiber on the polyamide 66/polyphenylene oxide composites. Materials 15(3):813

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Hong SM, Hwang SS, Seo Y, Chung IJ, Kim KU (1997) Reactive extrusion of in-situ composite based on PET and LCP blends. Polym Eng Sci 37(3):646–652

    CAS  Google Scholar 

  21. Sahoo N, Gupta S, Das C, Patra P, Tripathy A, Millns W (2003) Studies on pet/glass filled Lcp blends. Polym Plast Technol Eng 42(3):471–483

    CAS  Google Scholar 

  22. Ogawa T, Inaba T (1977) Gel permeation chromatography of ethylene–propylene copolymerization products. J Appl Polym Sci 21(11):2979–2990

    CAS  Google Scholar 

  23. Ogawa T, Inaba T (1974) Analysis of the fractionation of ethylene–propylene copolymerization products. J Appl Polym Sci 18(11):3345–3363

    CAS  Google Scholar 

  24. Becker D (2002) Blendas PP/PU: estudo do efeito do agente compatibilizante e reciclagem de resíduos de PU

  25. Lim G-T, Ju M-H, Kim D-H, Song K-C, Kim S-K (2001) Morphology and properties of PP/PU blends prepared by compositional quenching. Elastomers Compos 36(3):177–187

    CAS  Google Scholar 

  26. Mortazavi S, Golshan EN, Hassan AS (2006) Investigation and optimization of mechanical and morphological properties of a three-component PP/PU/EVA blend using taguchi experimental design. Iran J Polym Sci Technol 19(82):91–99

    Google Scholar 

  27. Rajput SM, Kumar S, Aswal VK, El Seoud OA, Malek NI, Kailasa SK (2018) Drug-induced micelle-to-vesicle transition of a cationic gemini surfactant: potential applications in drug delivery. ChemPhysChem 19(7):865–872

    CAS  PubMed  Google Scholar 

  28. Royall CP, Donald AM (2001) Confocal microscopy and environmental SEM applied to matting water-based lacquers. ACS Publications, Washington

    Google Scholar 

  29. Zhou Y, Jiang L, Jia H, Xing X, Sun Z, Chen S, Ma J, Jerrams S (2019) Study on spinnability of PP/PU blends and preparation of PP/PU bi-component melt blown nonwovens. Fibers Polym 20(6):1200–1207

    CAS  Google Scholar 

  30. Kupka V, Dvořáková E, Manakhov A, Michlíček M, Petruš J, Vojtová L, Zajíčková L (2020) Well-blended PCL/PEO electrospun nanofibers with functional properties enhanced by plasma processing. Polymers 12(6):1403

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Yang Y, Deng H, Fu Q (2020) Recent progress on PEDOT: PSS based polymer blends and composites for flexible electronics and thermoelectric devices. Mater Chem Front 4(11):3130–3152

    CAS  Google Scholar 

  32. Graziano A, Jaffer S, Sain M (2019) Review on modification strategies of polyethylene/polypropylene immiscible thermoplastic polymer blends for enhancing their mechanical behavior. J Elastomers Plast 51(4):291–336

    CAS  Google Scholar 

  33. Rostron P, Gaber S, Gaber D (2016) Raman spectroscopy, review. Laser 21:24

    Google Scholar 

  34. Bayguinov PO, Oakley DM, Shih CC, Geanon DJ, Joens MS, Fitzpatrick JA (2018) Modern laser scanning confocal microscopy. Curr Protoc Cytom 85(1):e39

    PubMed  Google Scholar 

  35. Luo D (2018) Adaptive measurement method for area chromatic confocal microscopy. KIT Scientific Publishing, Deutschland

    Google Scholar 

  36. Abbasi Moud A (2020) Gel development using cellulose nanocrystals. University of Calgary, Ph.D. (Thesis)

  37. Abbasi Moud A, Sanati-Nezhad A, Hejazi SH (2021) Confocal analysis of cellulose nanocrystal (CNC) based hydrogels and suspensions. Cellulose 28(16):10259–10276

    CAS  Google Scholar 

  38. Mitsutake H, Poppi RJ, Breitkreitz MC (2019) Raman imaging spectroscopy: history, fundamentals and current scenario of the technique. J Braz Chem Soc 30:2243–2258

    CAS  Google Scholar 

  39. Seyni FI, Grady BP (2021) Janus particles as immiscible polymer blend compatibilizers: a review. Colloid Polym Sci 299(4):585–593

    CAS  Google Scholar 

  40. Li Y, Shen B, Li S, Zhao Y, Qu J, Liu L (2021) Review of stimulated Raman scattering microscopy techniques and applications in the biosciences. Adv Biol 5(1):2000184

    Google Scholar 

  41. Durand J-C, Jacquot B, Salehi H, Margerit J, Cuisinier FJ (2012) Confocal Raman microscopy and SEM/EDS investigations of the interface between the zirconia core and veneering ceramic: the influence of a liner and regeneration firing. J Mater Sci Mater Med 23(6):1343–1353

    CAS  PubMed  Google Scholar 

  42. Furukawa T, Sato H, Kita Y, Matsukawa K, Yamaguchi H, Ochiai S, Siesler HW, Ozaki Y (2006) Molecular structure, crystallinity and morphology of polyethylene/polypropylene blends studied by Raman mapping, scanning electron microscopy, wide angle X-ray diffraction, and differential scanning calorimetry. Polym J 38(11):1127–1136

    CAS  Google Scholar 

  43. Kotula AP, Snyder CR, Migler KB (2017) Determining conformational order and crystallinity in polycaprolactone via Raman spectroscopy. Polymer 117:1–10

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Nielsen AS, Batchelder D, Pyrz R (2002) Estimation of crystallinity of isotactic polypropylene using Raman spectroscopy. Polymer 43(9):2671–2676

    CAS  Google Scholar 

  45. Mahendra I, Wirjosentono B, Ismail H, Mendez J, Causin V (2019) The influence of maleic anhydride-grafted polymers as compatibilizer on the properties of polypropylene and cyclic natural rubber blends. J Polym Res 26(9):1–10

    Google Scholar 

  46. Mahendra IP, Nghia PT, Phuong NTH, Hang TT, Alias NF, Ismail H (2021) Poly (L-lactic acid)/deproteinized natural rubber blends with enhanced compatibility. Polimery 66(2):105–111

    CAS  Google Scholar 

  47. Xanthos M, Dagli S (1991) Compatibilization of polymer blends by reactive processing. Polym Eng Sci 31(13):929–935

    CAS  Google Scholar 

  48. Wang H, Dong W, Li Y (2015) Compatibilization of immiscible polymer blends using in situ formed janus nanomicelles by reactive blending. ACS Macro Lett 4(12):1398–1403

    CAS  PubMed  Google Scholar 

  49. Yu L, Liu Y, Feng P, Shuai C, Peng S, Min A (2020) Organically modified montmorillonite improves interfacial compatibility between PLLA and PGA in bone scaffold. Polym Degrad Stab 182:109394

    CAS  Google Scholar 

  50. Khanra S, Ganguly D, Ghorai SK, Goswami D, Chattopadhyay S (2020) The synergistic effect of fluorosilicone and silica towards the compatibilization of silicone rubber and fluoroelastomer based high performance blend. J Polym Res 27(4):1–17

    Google Scholar 

  51. Liu X, Guo J-W, Liu Y-D, Liu M, Liu H, Han M-M, Ji S-X (2021) Antibacterial thermoplastic polyurethane/PL-DOSS composite films. Chin J Polym Sci 39(8):1020–1028

    CAS  Google Scholar 

  52. Phillips JS (2020) Organic rinsing of island-in-the-sea nylon 6/PLA bicomponent fibers. North Carolina State University, Raleigh

    Google Scholar 

  53. Arjmand M, Moud AA, Li Y, Sundararaj U (2015) Outstanding electromagnetic interference shielding of silver nanowires: comparison with carbon nanotubes. RSC Adv 5(70):56590–56598

    CAS  Google Scholar 

  54. Bijarimi M, Amirul M, Norazmi M, Ramli A, Desa M, Desa MA, Samah MAA (2019) Preparation and characterization of poly (lactic acid)(PLA)/polyamide 6 (PA6)/graphene nanoplatelet (GNP) blends bio-based nanocomposites. Mater Res Express 6(5):055044

    CAS  Google Scholar 

  55. Wang Y-L, Hu X, Li H, Ji X, Li Z-M (2010) Polyamide-6/poly (lactic acid) blends compatibilized by the maleic anhydride grafted polyethylene-octene elastomer. Polym Plast Technol Eng 49(12):1241–1246

    CAS  Google Scholar 

  56. Wu HX, Jiang SQ, Cui HR, Cui JY (2014) Maleic anhydride grafted modified PA6 as compatilizer preparation of PLA/PA6 blend. Appl Mech Mater 590:284–288

    Google Scholar 

  57. Codou A, Anstey A, Misra M, Mohanty AK (2018) Novel compatibilized nylon-based ternary blends with polypropylene and poly (lactic acid): morphology evolution and rheological behaviour. RSC Adv 8(28):15709–15724

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Chen Y, Yuan D, Xu C (2014) Dynamically vulcanized biobased polylactide/natural rubber blend material with continuous cross-linked rubber phase. ACS Appl Mater Interfaces 6(6):3811–3816

    CAS  PubMed  Google Scholar 

  59. Mathai AE, Singh R, Thomas S (2002) Transport of substituted benzenes through nitrile rubber/natural rubber blend membranes. J Membr Sci 202(1–2):35–54

    CAS  Google Scholar 

  60. Sae-Oui P, Sirisinha C, Hatthapanit K (2007) Effect of blend ratio on aging, oil and ozone resistance of silica-filled chloroprene rubber/natural rubber (CR/NR) blends. Express Polym Lett 1(1):8–14

    CAS  Google Scholar 

  61. Harmandaris VA, Kremer K, Floudas G (2013) Dynamic heterogeneity in fully miscible blends of polystyrene with oligostyrene. Phys Rev Lett 110(16):165701

    PubMed  Google Scholar 

  62. Yin J, Luo K, Chen X, Khutoryanskiy VV (2006) Miscibility studies of the blends of chitosan with some cellulose ethers. Carbohydr Polym 63(2):238–244

    CAS  Google Scholar 

  63. Goh SH (2014) Miscible polymer blends. In: Utracki LA, Wilkie CA (eds) Polymer blends handbook. Springer, Dordrecht, pp 1915–2151

    Google Scholar 

  64. Mauko A, Muck T, Mirtič B, Mladenovič A, Kreft M (2009) Use of confocal laser scanning microscopy (CLSM) for the characterization of porosity in marble. Mater Charact 60(7):603–609

    CAS  Google Scholar 

  65. Seneviratne R, Catania R, Rappolt M, Jeuken LJ, Beales PA (2022) Membrane mixing and dynamics in hybrid POPC/poly (1, 2-butadiene-block-ethylene oxide)(PBd-b-PEO) lipid/block co-polymer giant vesicles. Soft Matter 18:1294–1301

    CAS  PubMed  Google Scholar 

  66. Fransson S, Peleg O, Lorén N, Hermansson A-M, Kröger M (2010) Modelling and confocal microscopy of biopolymer mixtures in confined geometries. Soft Matter 6(12):2713–2722

    CAS  Google Scholar 

  67. Huang C, Forth J, Wang W, Hong K, Smith GS, Helms BA, Russell TP (2017) Bicontinuous structured liquids with sub-micrometre domains using nanoparticle surfactants. Nat Nanotechnol 12(11):1060–1063

    CAS  PubMed  Google Scholar 

  68. Mader M, Helm M, Lu M, Stenzel MH, Jérôme V, Freitag R, Agarwal S, Greiner A (2020) Perfusion cultivation of artificial liver extracellular matrix in fibrous polymer sponges biomimicking scaffolds for tissue engineering. Biomacromol 21(10):4094–4104

    CAS  Google Scholar 

  69. Gargas DJ, Toimil-Molares ME, Yang P (2009) Imaging single ZnO vertical nanowire laser cavities using UV-laser scanning confocal microscopy. J Am Chem Soc 131(6):2125–2127

    CAS  PubMed  Google Scholar 

  70. Royall CP, Donald AM (2002) Surface properties and structural collapse of silica in matte water-based lacquers. Langmuir 18(24):9519–9526

    CAS  Google Scholar 

  71. Kashiwagi T, Fagan J, Douglas JF, Yamamoto K, Heckert AN, Leigh SD, Obrzut J, Du F, Lin-Gibson S, Mu M (2007) Relationship between dispersion metric and properties of PMMA/SWNT nanocomposites. Polymer 48(16):4855–4866

    CAS  Google Scholar 

  72. Schmidt U, Ibach W, Mueller J, Hollricher O (2007) The Confocal Raman AFM: a powerful tool for the characterization of surface coatings. Opt Meas Syst Ind Insp V 6616:119–124

    Google Scholar 

  73. Schmidt P, Kolarik J, Lednicky F, Dybal J, Lagarón J, Pastor J (2000) Phase structure, composition and orientation of PC/PSAN blends studied by Raman spectroscopy, confocal Raman imaging spectroscopy and polarised PA-FTIR spectroscopy. Polymer 41(11):4267–4279

    CAS  Google Scholar 

  74. Schmidt U (2005) In: Confocal Raman-AFM, a new tool for materials research, APS March Meeting Abstracts, p A28. 015

  75. Schmidt U, Müller J, Koenen J (2010) Confocal raman imaging of polymeric materials. Confocal Raman microscopy. Springer, Berlin, pp 237–258

    Google Scholar 

  76. Biria S, Malley PP, Kahan TF, Hosein ID (2016) Tunable nonlinear optical pattern formation and microstructure in cross-linking acrylate systems during free-radical polymerization. J Phys Chem C 120(8):4517–4528

    CAS  Google Scholar 

  77. Kewitsch AS, Yariv A (1996) Self-focusing and self-trapping of optical beams upon photopolymerization. Opt Lett 21(1):24–26

    CAS  PubMed  Google Scholar 

  78. Jacobsen AJ, Barvosa-Carter W, Nutt S (2007) Micro-scale truss structures formed from self-propagating photopolymer waveguides. Adv Mater 19(22):3892–3896

    CAS  Google Scholar 

  79. Mitchell M, Segev M (1997) Self-trapping of incoherent white light. Nature 387(6636):880–883

    CAS  Google Scholar 

  80. Biria S, Hosein ID (2017) Control of morphology in polymer blends through light self-trapping: an in situ study of structure evolution, reaction kinetics, and phase separation. Macromolecules 50(9):3617–3626

    CAS  Google Scholar 

  81. Ozaki T, Koto T, Nguyen TV, Nakanishi H, Norisuye T, Tran-Cong-Miyata Q (2014) The roles of the trommsdorff-norrish effect in phase separation of binary polymer mixtures induced by photopolymerization. Polymer 55(7):1809–1816

    CAS  Google Scholar 

  82. Tran-Cong-Miyata Q, Nakanishi H (2017) Phase separation of polymer mixtures driven by photochemical reactions: current status and perspectives. Polym Int 66(2):213–222

    CAS  Google Scholar 

  83. Oguri M, Yoshida Y, Yoshihara K, Miyauchi T, Nakamura Y, Shimoda S, Hanabusa M, Momoi Y, Van Meerbeek B (2012) Effects of functional monomers and photo-initiators on the degree of conversion of a dental adhesive. Acta Biomater 8(5):1928–1934

    CAS  PubMed  Google Scholar 

  84. Xue L, Li W, GnG H, Goossens JG, Loos J, de With G (2011) High-resolution chemical identification of polymer blend thin films using tip-enhanced Raman mapping. Macromolecules 44(8):2852–2858

    CAS  Google Scholar 

  85. Del Campo A, de León AS, Rodriguez-Hernandez J, Muñoz-Bonilla A (2017) Honeycomb films with core–shell dispersed phases prepared by the combination of breath figures and phase separation process of ternary blends. Langmuir 33(11):2872–2877

    PubMed  Google Scholar 

  86. Abhyankar A, Mulvihill D, Auty M (2014) Combined confocal microscopy and large deformation analysis of emulsion filled gels and stirred acid milk gels. Food Struct 1(2):127–136

    Google Scholar 

  87. Benintende C, Boscaglia S, Dinotta F, Lacarrubba F, Micali G (2017) Treatment of ichthyosis vulgaris with a urea-based emulsion: videodermatoscopy and confocal microscopy evaluation. Giornale Italiano di Dermatologia e Venereologia: Organo Ufficiale, Societa Italiana di Dermatologia e Sifilografia 152(6):555–559

    PubMed  Google Scholar 

  88. Brujić J, Edwards SF, Grinev DV, Hopkinson I, Brujić D, Makse HA (2003) 3D bulk measurements of the force distribution in a compressed emulsion system. Faraday Discuss 123:207–220

    PubMed  Google Scholar 

  89. Brujić J, Edwards SF, Hopkinson I, Makse HA (2003) Measuring the distribution of interdroplet forces in a compressed emulsion system. Physica A 327(3–4):201–212

    Google Scholar 

  90. Brujić J, Song C, Wang P, Briscoe C, Marty G, Makse HA (2007) Measuring the coordination number and entropy of a 3d jammed emulsion packing by confocal microscopy. Phys Rev Lett 98(24):248001

    PubMed  Google Scholar 

  91. Forbes A, Haverkamp RG, Robertson T, Bryant J, Bearsley S (2001) Studies of the microstructure of polymer-modified bitumen emulsions using confocal laser scanning microscopy. J Microsc 204(3):252–257

    CAS  PubMed  Google Scholar 

  92. Han DH, Park S, Kim EJ, Chung TD (2017) In situ confocal microscopy of electrochemical generation and collision of emulsion droplets in bromide redox system. Electrochim Acta 252:164–170

    CAS  Google Scholar 

  93. Helgason T, Weiss J, McClements D, Gislason J, Einarsson J, Thormodsson F, Kristbergsson K (2008) Examination of the interaction of chitosan and oil-in-water emulsions under conditions simulating the digestive system using confocal microscopy. J Aquat Food Prod Technol 17(3):216–233

    CAS  Google Scholar 

  94. Hu Y-T, Ting Y, Hu J-Y, Hsieh S-C (2017) Techniques and methods to study functional characteristics of emulsion systems. J Food Drug Anal 25(1):16–26

    CAS  PubMed  Google Scholar 

  95. Bai L, Fruehwirth JW, Cheng X, Macosko CW (2015) Dynamics and rheology of nonpolar bijels. Soft Matter 11(26):5282–5293

    CAS  PubMed  Google Scholar 

  96. Boakye-Ansah S, Khan MA, Haase MF (2020) Controlling surfactant adsorption on highly charged nanoparticles to stabilize bijels. J Phys Chem C 124(23):12417–12423

    CAS  Google Scholar 

  97. Boakye-Ansah S, Schwenger MS, Haase MF (2019) Designing bijels formed by solvent transfer induced phase separation with functional nanoparticles. Soft Matter 15(16):3379–3388

    CAS  PubMed  Google Scholar 

  98. Cai D, Clegg PS, Li T, Rumble KA, Tavacoli JW (2017) Bijels formed by direct mixing. Soft Matter 13(28):4824–4829

    CAS  PubMed  Google Scholar 

  99. Cai D, Richter FH, Thijssen JH, Bruce PG, Clegg PS (2018) Direct transformation of bijels into bicontinuous composite electrolytes using a pre-mix containing lithium salt. Mater Horiz 5(3):499–505

    CAS  Google Scholar 

  100. Di Vitantonio G, Wang T, Haase MF, Stebe KJ, Lee D (2018) Robust bijels for reactive separation via silica-reinforced nanoparticle layers. ACS Nano 13(1):26–31

    PubMed  Google Scholar 

  101. Hijnen N, Cai D, Clegg PS (2015) Bijels stabilized using rod-like particles. Soft Matter 11(22):4351–4355

    CAS  PubMed  Google Scholar 

  102. Macmillan KA, Royer JR, Morozov A, Joshi YM, Cloitre M, Clegg PS (2019) Rheological behavior and in situ confocal imaging of bijels made by mixing. Langmuir 35(33):10927–10936

    CAS  PubMed  Google Scholar 

  103. Abbasi Moud A (2020) Gel development using cellulose nanocrystals.

  104. Abbasi Moud A, Kamkar M, Sanati-Nezhad A, Hejazi SH, Sundararaj U (2020) Nonlinear viscoelastic characterization of charged cellulose nanocrystal network structure in the presence of salt in aqueous media. Cellulose 27(10):5729–5743

    CAS  Google Scholar 

  105. Danesh M, Moud AA, Mauran D, Hojabr S, Berry R, Pawlik M, Hatzikiriakos SG (2021) The yielding of attractive gels of nanocrystal cellulose (CNC). J Rheol 65(5):855–869

    CAS  Google Scholar 

  106. Moud AA, Arjmand M, Liu J, Yang Y, Sanati-Nezhad A, Hejazi SH (2019) Cellulose nanocrystal structure in the presence of salts. Cellulose 26(18):9387–9401

    CAS  Google Scholar 

  107. Moud AA, Arjmand M, Yan N, Nezhad AS, Hejazi SH (2018) Colloidal behavior of cellulose nanocrystals in presence of sodium chloride. ChemistrySelect 3(17):4969–4978

    CAS  Google Scholar 

  108. Moud AA, Kamkar M, Sanati-Nezhad A, Hejazi SH, Sundararaj U (2021) Viscoelastic properties of poly (vinyl alcohol) hydrogels with cellulose nanocrystals fabricated through sodium chloride addition: rheological evidence of double network formation. Colloids Surf A 609:125577

    CAS  Google Scholar 

  109. Akoumeh R, Elzein T, Martínez-Campos E, Reviriego F, Rodríguez-Hernández J (2020) Fabrication of porous films from immiscible polymer blends: role of the surface structure on the cell adhesion. Polym Test 91:106797

    CAS  Google Scholar 

  110. Huan S, Lin W, Sato H, Yang H, Jiang J, Ozaki Y, Wu H, Shen G, Yu R (2007) Direct characterization of phase behavior and compatibility in PET/HDPE polymer blends by confocal Raman mapping. J Raman Spectrosc Int J Orig Work Asp Raman Spectrosc Incl High Order Process Brillouin Rayleigh Scatt 38(3):260–270

    CAS  Google Scholar 

  111. Lattante S, Perulli A, Anni M (2014) Characterization by confocal laser scanning microscopy of the phase composition at interfaces in thick films of polymer blends. J Polym 2014:541248. https://doi.org/10.1155/2014/541248

    Article  Google Scholar 

  112. Polli D, Grancini G, Clark J, Celebrano M, Virgili T, Cerullo G, Lanzani G (2010) Nanoscale imaging of the interface dynamics in polymer blends by femtosecond pump-probe confocal microscopy. Adv Mater 22(28):3048–3051

    CAS  PubMed  Google Scholar 

  113. Quintana SL, Schmidt P, Dybal J, Kratochvíl J, Pastor J, Merino J (2002) Microdomain structure and chain orientation in polypropylene/polyethylene blends investigated by micro-Raman confocal imaging spectroscopy. Polymer 43(19):5187–5195

    Google Scholar 

  114. Schmidt U, Mueller J, Weishaupt K, Hollricher O (2008) Analysis of multi-component polymer blends with the confocal Raman AFM. Microsc Microanal 14(S2):468–469

    Google Scholar 

  115. Shukutani T, Myojo T, Nakanishi H, Norisuye T, Tran-Cong-Miyata Q (2014) Tricontinuous morphology of ternary polymer blends driven by photopolymerization: reaction and phase separation kinetics. Macromolecules 47(13):4380–4386

    CAS  Google Scholar 

  116. Verhoogt H, Van Dam J, de Boer AP, Draaijer A, Houpt P (1993) Confocal laser scanning microscopy: a new method for determination of the morphology of polymer blends. Polymer 34(6):1325–1329

    CAS  Google Scholar 

  117. Benito-González I, Martínez-Sanz M, López-Rubio A, Gómez-Mascaraque LG (2020) Confocal Raman imaging as a useful tool to understand the internal microstructure of multicomponent aerogels. J Raman Spectrosc 51(10):2022–2035

    Google Scholar 

  118. Hamedi M, Karabulut E, Marais A, Herland A, Nyström G, Wågberg L (2013) Nanocellulose aerogels functionalized by rapid layer-by-layer assembly for high charge storage and beyond. Angew Chem 125(46):12260–12264

    Google Scholar 

  119. Henschen J, Illergård J, Larsson PA, Ek M, Wågberg L (2016) Contact-active antibacterial aerogels from cellulose nanofibrils. Colloids Surf B 146:415–422

    CAS  Google Scholar 

  120. Al-Shammery HA, Bubb NL, Youngson CC, Fasbinder DJ, Wood DJ (2007) The use of confocal microscopy to assess surface roughness of two milled CAD–CAM ceramics following two polishing techniques. Dent Mater 23(6):736–741

    CAS  PubMed  Google Scholar 

  121. Guo S, Todd RI (2010) Confocal fluorescence microscopy in alumina-based ceramics: Where does the signal come from? J Eur Ceram Soc 30(3):641–648

    CAS  Google Scholar 

  122. Etman MK (2009) Confocal examination of subsurface cracking in ceramic materials. J Prosthodont Implant Esthet Reconstr Dent 18(7):550–559

    Google Scholar 

  123. Durand J-C, Jacquot B, Salehi H, Fages M, Margerit J, Cuisinier FJ (2012) Confocal Raman microscopic analysis of the zirconia/feldspathic ceramic interface. Dent Mater 28(6):661–671

    CAS  PubMed  Google Scholar 

  124. Bitter K, Paris S, Martus P, Schartner R, Kielbassa A (2004) A confocal laser scanning microscope investigation of different dental adhesives bonded to root canal dentine. Int Endod J 37(12):840–848

    CAS  PubMed  Google Scholar 

  125. Mannocci F, Sherriff M, Ferrari M, Watson T (2001) Microtensile bond strength and confocal microscopy of dental adhesives bonded to root canal dentin. Am J Dent 14(4):200–204

    CAS  PubMed  Google Scholar 

  126. Sauro S, Pashley DH, Mannocci F, Tay FR, Pilecki P, Sherriff M, Watson TF (2008) Micropermeability of current self-etching and etch-and-rinse adhesives bonded to deep dentine: a comparison study using a double-staining/confocal microscopy technique. Eur J Oral Sci 116(2):184–193

    CAS  PubMed  Google Scholar 

  127. Cheng A-J, Manno M, Khare A, Leighton C, Campbell S, Aydil E (2011) Imaging and phase identification of Cu2ZnSnS4 thin films using confocal Raman spectroscopy. J Vac Sci Technol A Vac Surf Films 29(5):051203

    Google Scholar 

  128. Schmidt U, Hild S, Ibach W, Hollricher O (2005) Characterization of thin polymer films on the nanometer scale with confocal Raman AFM. Macromolecular symposia. Wiley Online Library, Weinheim, pp 133–143

    Google Scholar 

  129. Tomba JP, Carella JM, Pastor JM (2006) Interphase evolution in polymer films by confocal Raman microspectroscopy. Appl Spectrosc 60(2):115–121

    CAS  PubMed  Google Scholar 

  130. Wang C-W, Moffitt M (2005) Use of block copolymer-stabilized cadmium sulfide quantum dots as novel tracers for laser scanning confocal fluorescence imaging of blend morphology in polystyrene/poly (methyl methacrylate) films. Langmuir 21(6):2465–2473

    CAS  PubMed  Google Scholar 

  131. Zhuang Y, Sterr J, Kulozik U, Gebhardt R (2015) Application of confocal Raman microscopy to investigate casein micro-particles in blend casein/pectin films. Int J Biol Macromol 74:44–48

    CAS  PubMed  Google Scholar 

  132. Li L, Sosnowski S, Chaffey CE, Balke ST, Winnik MA (1994) Surface morphology of a polymer blend examined by laser confocal fluorescence microscopy. Langmuir 10(8):2495–2497

    CAS  Google Scholar 

  133. Doroshenko M, Gonzales M, Best A, Butt HJ, Koynov K, Floudas G (2012) Monitoring the dynamics of phase separation in a polymer blend by confocal imaging and fluorescence correlation spectroscopy. Macromol Rapid Commun 33(18):1568–1573

    CAS  PubMed  Google Scholar 

  134. Das TK (1997) Prediction of jet breakup length in liquid-liquid systems using the Rayleigh-Tomotika analysis. At Sprays 7(5):549–559

    CAS  Google Scholar 

  135. Migler KB (2001) String formation in sheared polymer blends: coalescence, breakup, and finite size effects. Phys Rev Lett 86(6):1023

    CAS  PubMed  Google Scholar 

  136. Pojman JA, Whitmore C, Turco Liveri ML, Lombardo R, Marszalek J, Parker R, Zoltowski B (2006) Evidence for the existence of an effective interfacial tension between miscible fluids: isobutyric acid− water and 1-butanol− water in a spinning-drop tensiometer. Langmuir 22(6):2569–2577

    CAS  PubMed  Google Scholar 

  137. Jinnai H, Kitagishi H, Hamano K, Nishikawa Y, Takahashi M (2003) Effect of confinement on phase-separation processes in a polymer blend observed by laser scanning confocal microscopy. Phys Rev E 67(2):021801

    Google Scholar 

  138. Jones RA, Norton LJ, Kramer EJ, Bates FS, Wiltzius P (1991) Surface-directed spinodal decomposition. Phys Rev Lett 66(10):1326

    CAS  PubMed  Google Scholar 

  139. Joseph R, George K, Francis DJ (1988) Studies on the cure characteristics and vulcanizate properties of 50/50 NR/SBR blend. J Appl Polym Sci 35(4):1003–1017

    CAS  Google Scholar 

  140. Robeson L (1984) Applications of polymer blends: emphasis on recent advances. Polym Eng Sci 24(8):587–597

    CAS  Google Scholar 

  141. Jinnai H, Yoshida H, Kimishima K, Funaki Y, Hirokawa Y, Ribbe AE, Hashimoto T (2001) Observation of fine structure in bicontinuous phase-separated domains of a polymer blend by laser scanning confocal microscopy. Macromolecules 34(15):5186–5191

    CAS  Google Scholar 

  142. Kim B, Lee TY, Abbaspourrad A, Kim S-H (2014) Perforated microcapsules with selective permeability created by confined phase separation of polymer blends. Chem Mater 26(24):7166–7171

    CAS  Google Scholar 

  143. LoPresti C, Massignani M, Fernyhough C, Blanazs A, Ryan AJ, Madsen J, Warren NJ, Armes SP, Lewis AL, Chirasatitsin S (2011) Controlling polymersome surface topology at the nanoscale by membrane confined polymer/polymer phase separation. ACS Nano 5(3):1775–1784

    CAS  PubMed  Google Scholar 

  144. Yoshida S, Trifkovic M (2019) Unraveling the effect of 3d particle localization on coarsening dynamics and rheological properties in cocontinuous polymer blend nanocomposites. Macromolecules 52(20):7678–7687

    CAS  Google Scholar 

  145. Yao Y, Xiang S, Lu M, Huang Y, Kong M, Li G (2021) Significantly suppressed coalescence in flowing polymer blends by a synergy between surface chemistry and roughness of nanoparticles. Polymer 223:123698

    CAS  Google Scholar 

  146. Maeda Y, Yamamoto H, Ikeda I (2003) Phase separation of aqueous solutions of poly (n-isopropylacrylamide) investigated by confocal raman microscopy. Macromolecules 36(14):5055–5057

    CAS  Google Scholar 

  147. Mhaske P, Condict L, Dokouhaki M, Farahnaky A, Kasapis S (2020) Phase volume quantification of agarose-ghee gels using 3D confocal laser scanning microscopy and blending law analysis: a comparison. LWT 129:109567

    CAS  Google Scholar 

  148. Hayes KA, Buckley MR, Cohen I, Archer LA (2008) Nonlinear rheology of entangled polymer solutions in narrow gaps probed by confocal microscopy. In: AIP Conference Proceedings. American Institute of Physics, pp 394–396

  149. Kamanyi A, Ngwa W, Betz T, Wannemacher R, Grill W (2006) Combined phase-sensitive acoustic microscopy and confocal laser scanning microscopy. Ultrasonics 44:e1295–e1300

    PubMed  Google Scholar 

  150. Huang J-H, Chien F-C, Chen P, Ho K-C, Chu C-W (2010) Monitoring the 3D nanostructures of bulk heterojunction polymer solar cells using confocal lifetime imaging. Anal Chem 82(5):1669–1673

    CAS  PubMed  Google Scholar 

  151. Song Y, Srinivasarao M, Tonelli A, Balik C, McGregor R (2000) Laser scanning confocal microscopy study of dye diffusion in fibers. Macromolecules 33(12):4478–4485

    CAS  Google Scholar 

  152. Cabanelas J, Serrano B, Gonzalez M, Baselga J (2005) Confocal microscopy study of phase morphology evolution in epoxy/polysiloxane thermosets. Polymer 46(17):6633–6639

    CAS  Google Scholar 

  153. Zou M, Barton B, Geertz G, Brüll R (2019) Accurate determination of the layer thickness of a multilayer polymer film by non-invasive multivariate confocal Raman microscopy. Analyst 144(18):5600–5607

    CAS  PubMed  Google Scholar 

  154. Ma Y, Farinha J, Winnik MA, Yaneff PV, Ryntz RA (2004) Compatibility of chlorinated polyolefin with the components of thermoplastic polyolefin: a study by laser scanning confocal fluorescence microscopy. Macromolecules 37(17):6544–6552

    CAS  Google Scholar 

  155. Gupta D, Nagesh K, Narayan K, Kabra D (2017) Photocurrent imaging of phase segregation in a ternary polymer blend induced via a non-solvent route. J Polym Res 24(2):1–6

    Google Scholar 

  156. Mhaske P, Condict L, Dokouhaki M, Katopo L, Kasapis S (2019) Quantitative analysis of the phase volume of agarose-canola oil gels in comparison to blending law predictions using 3D imaging based on confocal laser scanning microscopy. Food Res Int 125:108529

    CAS  PubMed  Google Scholar 

  157. Koulic C, Yin Z, Pagnoulle C, Gilbert B, Jérôme R (2001) Premade versus in situ formed compatibilizer at the PS/PMMA interface: contribution of the Raman confocal microscopy to the fracture analysis. Polymer 42(7):2947–2957

    CAS  Google Scholar 

  158. Ashtikar M, Matthäus C, Schmitt M, Krafft C, Fahr A, Popp J (2013) Non-invasive depth profile imaging of the stratum corneum using confocal Raman microscopy: first insights into the method. Eur J Pharm Sci 50(5):601–608

    CAS  PubMed  Google Scholar 

  159. Bardow A, Göke V, Koß H-J, Lucas K, Marquardt W (2005) Concentration-dependent diffusion coefficients from a single experiment using model-based Raman spectroscopy. Fluid Phase Equilib 228:357–366

    Google Scholar 

  160. Mohamed AL, Er-Rafik M, Moller M (2013) Supercritical carbon dioxide assisted silicon based finishing of cellulosic fabric: a novel approach. Carbohydr Polym 98(1):1095–1107

    CAS  PubMed  Google Scholar 

  161. Yang T, Doherty J, Guo H, Zhao B, Clark JM, Xing B, Hou R, He L (2019) Real-time monitoring of pesticide translocation in tomato plants by surface-enhanced Raman spectroscopy. Anal Chem 91(3):2093–2099

    CAS  PubMed  Google Scholar 

  162. Li Y-J, Li H-Y, Sun S-N, Sun R-C (2019) Evaluating the efficiency of γ-valerolactone/water/acid system on Eucalyptus pretreatment by confocal Raman microscopy and enzymatic hydrolysis for bioethanol production. Renew Energy 134:228–234

    CAS  Google Scholar 

  163. Lin Y-M, Song C, Rutledge GC (2019) Direct three-dimensional visualization of membrane fouling by confocal laser scanning microscopy. ACS Appl Mater Interfaces 11(18):17001–17008

    CAS  PubMed  Google Scholar 

  164. Song S, Liu X, Nikbin E, Howe JY, Yu Q, Manners I, Winnik MA (2021) Uniform 1D micelles and patchy & block comicelles via scalable, one-step crystallization-driven block copolymer self-assembly. J Am Chem Soc 143(16):6266–6280

    CAS  PubMed  Google Scholar 

  165. Moud AA (2022) Recent advances in utility of artificial intelligence towards multiscale colloidal based materials design. Colloid Interface Sci Commun 47:100595

    Google Scholar 

  166. Schölch S, Schäfer J-L, Meckel T, Brandstetter T, Biesalski M, Rühe Jr (2021) Diazo-based copolymers for the wet strength improvement of paper based on thermally induced CH-insertion cross-linking. Biomacromol 22(7):2864–2873

    Google Scholar 

  167. Haase MF, Stebe KJ, Lee D (2015) Continuous fabrication of hierarchical and asymmetric bijel microparticles, fibers, and membranes by solvent transfer-induced phase separation (STRIPS). Adv Mater 27(44):7065–7071

    CAS  PubMed  Google Scholar 

  168. Edmans JG, Murdoch C, Santocildes-Romero ME, Hatton PV, Colley HE, Spain SG (2020) Incorporation of lysozyme into a mucoadhesive electrospun patch for rapid protein delivery to the oral mucosa. Mater Sci Eng C 112:110917

    CAS  Google Scholar 

  169. Poszwa P, Kędzierski K, Barszcz B, Nowicka A (2016) Fluorescence confocal microscopy as effective testing method of polypropylene fibers and single polymer composites. Polym Test 53:174–179

    CAS  Google Scholar 

  170. Stratigaki M, Baumann C, Göstl R (2022) Confocal microscopy visualizes particle-crack interactions in epoxy composites with optical force probe-cross-linked rubber particles. Macromolecules 55:1060–1066

    CAS  Google Scholar 

  171. Orihara H, Shibuya T, Ujiie S (2003) Observation of polymer interface instability. Polymer 44(26):8133–8137

    CAS  Google Scholar 

  172. Orihara H, Ikeyama Y, Ujiie S, Inoue A (2003) Observations of immiscible polymer blend electrorheological fluids with a confocal scanning laser microscope. J Rheol 47(5):1299–1310

    CAS  Google Scholar 

  173. Hajatdoost S, Olsthoorn M, Yarwood J (1997) Depth profiling study of effect of annealing temperature on polymer/polymer interfaces in laminates using confocal Raman microspectroscopy. Appl Spectrosc 51(12):1784–1790

    CAS  Google Scholar 

  174. da Silva DJ, Wiebeck H (2017) Using PLS, iPLS and siPLS linear regressions to determine the composition of LDPE/HDPE blends: a comparison between confocal Raman and ATR-FTIR spectroscopies. Vib Spectrosc 92:259–266

    Google Scholar 

  175. Lam Y, Jiang L, Yue C, Tam K, Li L, Hu X (2003) Interfacial slip between polymer melts studied by confocal microscopy and rheological measurements. J Rheol 47(3):795–807

    CAS  Google Scholar 

  176. Boukany PE, Wang S-Q, Ravindranath S, Lee LJ (2015) Shear banding in entangled polymers in the micron scale gap: a confocal-rheoscopic study. Soft Matter 11(41):8058–8068

    CAS  PubMed  Google Scholar 

  177. Abbasi Moud A, Poisson J, Hudson ZM, Hatzikiriakos SG (2021) Yield stress and wall slip of kaolinite networks. Phys Fluids 33(5):053105

    CAS  Google Scholar 

  178. Lee PC, Park HE, Morse DC, Macosko CW (2009) Polymer-polymer interfacial slip in multilayered films. J Rheol 53(4):893–915

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aref Abbasi Moud.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abbasi Moud, A. Polymer blends analyzed with confocal laser scanning microscopy. Polym. Bull. 80, 5929–5964 (2023). https://doi.org/10.1007/s00289-022-04394-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-022-04394-w

Keywords

Navigation