Skip to main content
Log in

Nanocomposites by in situ polymerization based on styrene-maleic anhydride copolymer and clay

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Nanocomposites based on styrene and maleic anhydride copolymers (SMA/Mag-CTA) are obtained through in situ polymerization method in the presence of Maghnite (Mag) a montmorillonite clay material as nano-reinforcing filler and benzoyl peroxide as a catalyst. The Mag-CTA is organophilic silicate clay prepared through a direct exchange process, using Cetyltrimethylammonium bromide in which it used as green nano-filler. The prepared SMA/Mag-CTA nanocomposites have been extensively characterized by Fourier transform infrared spectroscopy, X-ray diffraction (XRD), scanning electron microscopy and transmission electron microscopy (TEM). TEM analysis confirms the results obtained by XRD and clearly show the nature of SMA/Mag-CTA nanocomposites. Mag-CTA layers are partially exfoliated for the lower amount of clay (3 wt%), intercalated for higher amounts of clay (5 and 7 wt%), and well dispersed in SMA copolymers. Moreover, thermogravimetric analysis data indicated an enhancement of thermal stability of nanocomposites compared with the pure copolymer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Yousif E, Haddad R (2013) Photodegradation and photostabilization of polymers, especially polystyrene: review. Springer Plus 2:398

    PubMed  PubMed Central  Google Scholar 

  2. Lai B, Zhou Y, Qin H, Wu C, Pang C, Lian Y, Xu J (2012) Pretreatment of wastewater from acrylonitrile–butadiene–styrene (ABS) resin. Chem Eng J 179:1–7

    CAS  Google Scholar 

  3. Zhang J, Chen H, Zhou Y (2013) Compatibility of waste rubber powder/polystyrene blends by the addition of styrene grafted styrene butadiene rubber copolymer: effect on morphology and properties. Polym Bull 70:2829–2841

    CAS  Google Scholar 

  4. Devi RR, Maji TK (2012) Chemical modification of simul wood with styrene–acrylonitrile copolymer and organically modified nanoclay. Wood Sci Technol 46:299–315

    CAS  Google Scholar 

  5. Mao Z, Zhang J (2018) Largely improved the low temperature toughness of acrylonitrilestyrene-acrylate (ASA) resin: fabricated a core-shell structure of two elastomers through the differences of interfacial tensions. Appl Surf Sci 444:345–354

    CAS  Google Scholar 

  6. Huang K, Yu S, Li X (2020) One-pot synthesis of bimetal MOFs as highly efficient catalysts for selective oxidation of styrene. J Chem Sci 132:139

    CAS  Google Scholar 

  7. Lima MS, Costa CSMF, Coelho JFJ, Fonseca AC, Serra AC (2018) Simple strategy toward the substitution of styrene by sobrerol-based monomers in unsaturated polyester resins. Green Chem 20:4880–4890

    CAS  Google Scholar 

  8. Klumperman B (2010) Mechanistic considerations on styrene–maleic anhydride copolymerization reactions. Polym Chem 1(5):558–562

    CAS  Google Scholar 

  9. Tsuchida E, Tomono T (1971) Discussion on the mechanism of alternating copolymerization of styrene and maleic anhydride. Makromol Chem 141:265–298

    CAS  Google Scholar 

  10. Sanders CG, Duchateau R, Lin CY, Coote LM, Johan Heutes PA (2012) End-functional styrene-maleic anhydride copolymers via catalytic chain transfer polymerization. Macromolecules 45:5923–5933

    CAS  Google Scholar 

  11. Bhuyan K, Dass NN (1989) Thermal studies of copolymers of styrene and maleic anhydride. J Therm Anal 35(7):2529–2533

    CAS  Google Scholar 

  12. Tsukigawa K, Liao L, Nakamura H, Fang J, Greish K, Otagiri M, Maeda H (2015) Synthesis and therapeutic effect of styrene-maleic acid copolymer-conjugated pirarubicin. Cancer Sci 106(3):270–278

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Chen P, Deng G, Hu D, Wang Y, Meng Z, Huab W, Xi K (2016) Enhanced mechanical properties and thermal stability of PSMA by functionalized graphenenanosheets. RSC Adv 6:68748

    CAS  Google Scholar 

  14. Saisyo A, Nakamura H, Fang J, Tsukigawa K, Greish K, Furukawa H, Maeda H (2016) pH-sensitive polymeric cisplatin-ion complex with styrene-maleic acid copolymer exhibits tumor-selective drug delivery and antitumor activity as a result of the enhanced permeability and retention effect. Colloids Surf B 138:128–137

    CAS  Google Scholar 

  15. Maeda H (2001) SMANCS and polymer-conjugated macromolecular drugs: advantages in cancer chemotherapy. Adv Drug Deliv Rev 46:169–185

    CAS  PubMed  Google Scholar 

  16. Patel H, Raval DA, Madamwar D, Patel SR (1998) Polymeric prodrug : synthesis, release study and antimicrobial property of poly (styrene-co-maleic anhydride)-bound acriflavine. Die Angewandte Makromol Chem 263(1):25–30

    CAS  Google Scholar 

  17. Ignatova M, Manolova OSN, Markova N, Rashkov I (2010) Electrospun Mats from styrene/maleic anhydride copolymers: modification with amines and assessment of antimicrobial activity. Macromol Biosci 10(8):944–954

    CAS  PubMed  Google Scholar 

  18. Ye J, Wang X, Chu J, Yao D, Zhang Y, Meng J (2019) Electrospunpoly(styrene-co-maleic anhydride) nanofibrous membrane: a versatile platform for mixed mode membrane adsorbers. Appl Surf Sci 484:62–71

    CAS  Google Scholar 

  19. Rzayev ZMO (2011) Graft copolymers of maleic anhydride and its isostructural analogues: high performance engineering materials. Int Rev Chem Eng 3:153–215

    Google Scholar 

  20. Krüger S, Krahl F, Arndt K-F (2010) Random cross-linked poly(styrene-co-maleic anhydride): characterization of cross-linking intermediates by size exclusion chromatography. Eur Polym J 46:1040–1048

    Google Scholar 

  21. Jarm V, Serti S, Segudović N (1995) Stability of aqueous solutions of poly [(maleic acid)-alt-styrene] sodium salts in the presence of divalent cations. J Appl Polym Sci 58:1973–1979

    CAS  Google Scholar 

  22. Yin X, Stöver HDH (2002) Thermosensitive and pH-sensitive polymers based on maleic anhydride copolymers. Macromolecules 35:10178–10181

    CAS  Google Scholar 

  23. Wang T-L, Lee H-M, Kuo P-L (2000) Functional polymers for colloidal applications. XIV. Syntheses of styrene–maleic anhydride copolymers with different charges and their ability to disperse kaolinite particles. J Appl Polym Sci 78:592–602

    CAS  Google Scholar 

  24. Yin X, Stöver HDH (2003) Hydrogel microspheres formed by complex coacervation of partially MPEG-grafted poly (styrene-a lt-maleic anhydride) with PDADMAC and cross-linking with polyamines. Macromolecules 36:8773–8779

    CAS  Google Scholar 

  25. Khan DM, Kausar A, Salman SM (2016) Buckypapers of polyvinyl chloride/poly(styrene-co-maleic anhydride) blend intercalatedgraphene oxide-carbon nanotube nanobifiller: physical property exploration. Fuller Nanotub Carbon Nanostruct 24(3):202–212

    CAS  Google Scholar 

  26. Khan DM, Kausar A, Salman SM (2016) Fabrication and characterization of polyvinyl chloride/poly(styrene-Co-maleic anhydride) intercalated functional nanobifiller-based composite paper. Int J Polym Anal Charact 21(3):228–243

    CAS  Google Scholar 

  27. Wang YP, Shen YQ, Pei XW, Zhang SC, Liu HG, Ren JM (2008) In situ synthesis of poly(styrene-co-maleic anhydride)/SiO2 hybrid composites via “grafting onto” strategy based on nitroxide-mediated radical polymerization. React Funct Polym 68(8):1225–1230

    CAS  Google Scholar 

  28. Xing S, Li R, Si J, Tang P (2016) In situ polymerization of poly(styrene-alt-maleic anhydride)/organic montmorillonite nanocomposites and their ionomers as crystallization nucleating agents for poly(ethylene terephthalate). J Ind Eng Chem 38:167–174

    CAS  Google Scholar 

  29. Derdar H, Belbachir M, Harrane A (2019) A green synthesis of polylimonene using maghnite-H+, an exchanged montmorillonite clay, as eco-catalyst. Bull Chem React Eng Catal 14:69–79

    CAS  Google Scholar 

  30. Derdar H, Belbachir M, Hennaoui F, Akeb M, Harrane A (2018) Green copolymerization of limonene with β-pinene catalyzed by an eco-catalyst maghnite-H+. Polym Sci Ser B 60:555

    CAS  Google Scholar 

  31. Derdar H, Mitchell GR, Cherifi Z, Belbachir M, Benachour M, Meghabar R, Bachari K, Harrane A (2020) Bull Chem React Eng Catal 15:798

    CAS  Google Scholar 

  32. Derdar H, Meghabar R, Benachour M et al (2021) Polymer-clay nanocomposites: exfoliation and intercalation of organophilic montmorillonite nanofillers in styrene-limonene copolymer. Polym Sci Ser A 63:568–575

    Google Scholar 

  33. Cherifi Z, Boukoussa B, Zaoui A, Belbachir M, Meghabar R (2018) Structural, morphological and thermal properties of nanocomposites poly(GMA)/clay prepared by ultrasound and in-situ polymerization. Ultrason Sono Chem 48:188–198

    CAS  Google Scholar 

  34. Derdar H, Mitchell GR, Mahendra VS, Benachour M, Haoue S, Cherifi Z, Bachari K, Harrane A, Meghabar R (1971) Green nanocomposites from rosin-limonene copolymer and Algerian clay. Polymers 2020:12

    Google Scholar 

  35. Ghayaza M, LeForestier L, Muller F, Tournassat C, Beny J-M (2011) Pb(II) and Zn(II) adsorption onto Na- and Ca-montmorillonites in acetic acid/acetate medium: experimental approach andgeochemical modeling. J Colloid Interface Sci 361:238–246

    CAS  PubMed  Google Scholar 

  36. Yang Y, Wang S, Liu J, Xu Y, Zhou X (2016) Adsorption of lysine on Na-montmorillonite and competition with Ca2+: a combined XRD and ATR-FTIR study. Langmuir 32(19):4746–4754

    CAS  PubMed  Google Scholar 

  37. Boufatit M, Ait-Amar H, McWhinnie WR (2008) Development of an algerian material montmorillonite clay—intercalation with selective long chain alkylammoniumcations (octadecytrimethylammonium, cetylpyridium and tetrabutylammonium) and with tellerium complexes. Desalination 223:366–374

    CAS  Google Scholar 

  38. Molloy MW, Kerr PF (1961) Diffractometer patterns of A.P.I reference clayminerals. Am Mineral 46:594–598

    Google Scholar 

  39. Foletto EL, Volzone C, Porto LM (2003) Braz J Chem Eng 20:139

    CAS  Google Scholar 

  40. Madejova J, Komadel P (2001) Baseline studies of the clay minerals society source clays: infrared methods. Clays Clay Miner 49:410–432

    CAS  Google Scholar 

  41. Kumar P, Jasra RV, Bhat TSG (1995) Evolution of porosity and surface acidity in montmorillonite clay on acid activation. Ind Eng Chem Res 34:1440–1448

    CAS  Google Scholar 

  42. Tyagi B, Chudasama CD, Jasra RV (2006) Determination of structural modification in acid activated montmorillonite clay by FT-IR spectroscopy. Spectrochim Acta Part A Mol Biomol Spectrosc 64:273–278

    Google Scholar 

  43. Faghihian H, Mohammadi MH (2013) Surface properties of pillared acid-activated bentonite as catalyst for selective production of linear alkylbenzene. Appl Surf Sci 264:492–499

    CAS  Google Scholar 

  44. Salmi-Mani H, Ait-Touchente Z, Lamouri A, Carbonnier B, Caron JF, Benzarti K, Chehimi MM (2016) Diazonium salt-based photoiniferter as a new efficient pathway to clay–polymer nanocomposites. RSC Adv 6:88126

    CAS  Google Scholar 

  45. Cherifi Z, Zaoui A, Boukoussa B et al (2022) Ultrasound-promoted preparation of cellulose acetate/organophilic clay bio-nanocomposites films by solvent casting method. Polym Bull 108:1–13

    Google Scholar 

  46. Kellou MS, Jenner G (1976) Homopolymérisation radicalaire de l’anhydride maléique. Eur Polym J 12:883–887

    CAS  Google Scholar 

  47. Nozakura S, Inaki Y (1971) J Polym Sci Pt D 5:109

    Google Scholar 

  48. Bureau MN, Denault J, Cole KC, Enright GD (2002) The role of crystallinity and reinforcement in the mechanical behavior of polyamide-6/ clay nanocomposites. Polym Eng sci 42:1897–1906

    CAS  Google Scholar 

  49. Kherroub DE, Belbachir M, Lamouri S (2014) Nylon 6/clay nanocomposites prepared with Algerian modified clay (12-maghnite). Res Chem Int 41:5217–5228

    Google Scholar 

  50. Vaia RA, Price G, Ruth PN, Nguyen HT, Lichtenhan J (1999) Polymer/layered silicate nanocomposite as high performance ablative materials. Appl Clay Sci 15:67–92

    CAS  Google Scholar 

  51. Zhu ZK, Yang Y, Yin J, Wang XY, Ke YC, Qi ZN (1999) Preparation and properties of organosoluble montmorillonite/polyimide hybrid materials. J Appl Polym Sci 73:2063–2068

    CAS  Google Scholar 

  52. Wang S, Long C, Wang X, Li Q, Qi Z (1998) Synthesis and properties of silicone rubber/organomontmorillonite hybrid nanocomposites. J Appl Polym Sci 69:1557

    CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank the (DGRSDT) Direction Générale de la Recherche Scientifique et du Développement Technologique-Algeria, and the CDRSP-IPLeiria (Centre For Rapid and Sustainable Product Development) for giving us access to their STA device.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hodhaifa Derdar.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baghdadli, M.C., Derdar, H., Cherifi, Z. et al. Nanocomposites by in situ polymerization based on styrene-maleic anhydride copolymer and clay. Polym. Bull. 80, 6869–6883 (2023). https://doi.org/10.1007/s00289-022-04392-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-022-04392-y

Keywords

Navigation