Skip to main content

Advertisement

Log in

Innovative synthesis of non-porous polyurethane membranes with enhanced mechanical, thermal and adsorption properties

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

The non-porous rubbery polyurethane membranes (PUMs) have been successfully prepared from different molecular weights of polycaprolactone (PCL), 4,4,-dicyclohexylmethane (H12MDI diisocyanates) and 1,4-Butane diol (BDO), which are used in synthesis of soft and rigid segment, in gas separation. All structure of membranes were confirmed by FTIR technique that exhibits high molecular weight content of PCL conveniences the strong peak at 1710 cm−1 corresponds to hydrogen bonding in urethane groups that controls the packing, morphology and crystallization in polyurethane membranes. Differential scanning calorimeter (DSC) measurement provided a lower Tg at 50 °C and Tmax at 550 °C in the heating scanning curve of PCL 750–2000, which indicated that lower energy is required to overcome the chain–chain interaction. The polyester groups in PCL structure created hydrogen bonding which increased hydrophilicity, chain mobility, flexibility and transport of gases. Atomic force microscopy confirmed the non-porous, wettability and increase roughness on membrane surface as high molecular weight of polyol increases the gas solubility and diffusivity. Excellent values of tensile strength (13.25 Mpa), elongation at break hardness (361%) and hardness (86A) were observed for higher molecular weight (2000) PUM by universal testing machine. The lower molecular PUM-1 (750 Mw) content has 46% lower CO2, CH4, N2 and O2 permeability of pure gases as compared to high PUM-4 and PUM-5 having 1600, 2000 of PCL content in polyurethane. Permeability property of gases is associated with free volume and flexibility of polymer backbone segments within the membrane, which is dominated by the chain mobility of polymeric substance. The high permeation flux and selectivity were achieved by increasing feed temperature, pressure and transient gaps. The CO2/N2 selectivity increased as compared to CO2/CH4 due to chain packing density, lower free volume and saturation of carrier efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Scheme 1
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Kamble AR, Patel CM, Murthy Z (2021) A review on the recent advances in mixed matrix membranes for gas separation processes. Renew Sustain Energy Rev 145:111062

    Article  CAS  Google Scholar 

  2. Dilshad MR, Islam A, Haider B, Sajid M, Ijaz A, Khan RU et al (2021) Effect of silica nanoparticles on carbon dioxide separation performances of PVA/PEG cross-linked membranes. Chem Pap 75(7):3131–3153

    Article  CAS  Google Scholar 

  3. Khosravi A, Sadeghi M, Banadkohi HZ, Talakesh MM (2014) Polyurethane-silica nanocomposite membranes for separation of propane/methane and ethane/methane. Ind Eng Chem Res 53(5):2011–2021

    Article  CAS  Google Scholar 

  4. Ghosh UK, Pradhan NC, Adhikari B (2006) Synthesis and characterization of porous polyurethaneurea membranes for pervaporative separation of 4-nitrophenol from aqueous solution. Bull Mater Sci 29(3):225–231

    Article  CAS  Google Scholar 

  5. Li J, Huang M, Wei P, Zhang Y, Zhao X, Liu C et al (2022) Comprehensive analysis on anomalous phenomenon of ethanol-soluble poly (vinyl butyral) membrane for ethanol recovery via pervaporation. AIChE J 68(3):e17560

    Article  CAS  Google Scholar 

  6. Shin H, Lee D, Chaudhari S, Choi S, Cho KY, Shon M et al (2022) Hydroxyl-functionalized ultra-thin graphitic-carbon-nitrite nanosheets-accommodated polyvinyl alcohol membrane for pervaporation of isopropanol/water mixture. J Taiwan Inst Chem Eng 132:104126

    Article  CAS  Google Scholar 

  7. Mao H, Li S-H, Zhang A-S, Xu L-H, Lu H-X, Lv J et al (2021) Furfural separation from aqueous solution by pervaporation membrane mixed with metal organic framework MIL-53 (Al) synthesized via high efficiency solvent-controlled microwave. Sep Purif Technol 272:118813

    Article  CAS  Google Scholar 

  8. Ghosh UK, Pradhan NC, Adhikari B (2010) Pervaporative separation of furfural from aqueous solution using modified polyurethaneurea membrane. Desalination 252(1–3):1–7

    Article  CAS  Google Scholar 

  9. Farnam M, Bin Mukhtar H, Bin Mohd Shariff A (2021) A review on glassy and rubbery polymeric membranes for natural gas purification. Chem Bio Eng Rev. https://doi.org/10.1002/cben.202100002

    Article  Google Scholar 

  10. Tan K, Obendorf SK (2007) Development of an antimicrobial microporous polyurethane membrane. J Membr Sci 289(1–2):199–209

    Article  CAS  Google Scholar 

  11. Yilgör I, Yilgör E (1999) Hydrophilic polyurethaneurea membranes: influence of soft block composition on the water vapor permeation rates. Polymer 40(20):5575–5581

    Article  Google Scholar 

  12. Knozowska K, Kujawski W, Zatorska P, Kujawa J (2018) Pervaporative efficiency of organic solvents separation employing hydrophilic and hydrophobic commercial polymeric membranes. J Membr Sci 564:444–455

    Article  CAS  Google Scholar 

  13. Lue SJ, Ou JS, Chen S-L, Hung W-S, Hu C-C, Jean Y et al (2010) Tailoring permeant sorption and diffusion properties with blended polyurethane/poly (dimethylsiloxane)(PU/PDMS) membranes. J Membr Sci 356(1–2):78–87

    Article  CAS  Google Scholar 

  14. Palumbo FS, Federico S, Pitarresi G, Fiorica C, Giammona G (2021) Synthesis and characterization of redox-sensitive polyurethanes based on L-glutathione oxidized and poly (ether ester) triblock copolymers. React Funct Polym 166:104986

    Article  CAS  Google Scholar 

  15. Isfahani AP, Shahrooz M, Yamamoto T, Muchtar A, Ito MM, Yamaguchi D et al (2021) Influence of microstructural variations on morphology and separation properties of polybutadiene-based polyurethanes. RSC Adv 11(25):15449–15456

    Article  Google Scholar 

  16. Zia KM, Anjum S, Zuber M, Mujahid M, Jamil T (2014) Synthesis and molecular characterization of chitosan based polyurethane elastomers using aromatic diisocyanate. Int J Biol Macromol 66:26–32

    Article  CAS  PubMed  Google Scholar 

  17. Ghalei B, Isfahani AP, Nilouyal S, Vakili E, Salooki MK (2019) Effect of polyvinyl alcohol modified silica particles on the physical and gas separation properties of the polyurethane mixed matrix membranes. SILICON 11(3):1451–1460

    Article  CAS  Google Scholar 

  18. Liu H, Xiao C, Hu X, Liu M (2013) Post-treatment effect on morphology and performance of polyurethane-based hollow fiber membranes through melt-spinning method. J Membr Sci 427:326–335

    Article  CAS  Google Scholar 

  19. Moattari RM, Mohammadi T, Rajabzadeh S, Dabiryan H, Matsuyama H (2021) Reinforced hollow fiber membranes: a comprehensive review. J Taiwan Inst Chem Eng 122:284–310

    Article  CAS  Google Scholar 

  20. Barikani M, Hepburn C (1987) The relative thermal stability of polyurethane elastomers. II: Influence of polyol-diisocyanate molar block ratios with a single and mixed diisocyanate system. Cell polym 6(1):29–36

    CAS  Google Scholar 

  21. Roohpour N, Wasikiewicz JM, Moshaverinia A, Paul D, Grahn MF, Rehman IU et al (2010) Polyurethane membranes modified with isopropyl myristate as a potential candidate for encapsulating electronic implants: A study of biocompatibility and water permeability. Polymers 2(3):102–119

    Article  CAS  Google Scholar 

  22. Dusek K, Spirkova M, Havlicek I (1990) Network formation of polyurethanes due to side reactions. Macromolecules 23(6):1774–1781

    Article  CAS  Google Scholar 

  23. Baker RW (2012) Membrane technology and applications, 3rd edn. John Wiley & Sons, Hoboken

    Book  Google Scholar 

  24. Sultan M, Bhatti HN, Zuber M, Barikani M (2013) Synthesis and characterization of waterborne polyurethane acrylate copolymers. Korean J Chem Eng 30(2):488–493

    Article  CAS  Google Scholar 

  25. Wang N, Wang X, Lang J, Hu Z, Zhang H (2021) Synthesis and characterization of hyperbranched and organosilicone modified waterborne polyurethane acrylates photosensitive resin. Polymers 13(13):2039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Sadeghi M, Afarani HT, Tarashi Z (2015) Preparation and investigation of the gas separation properties of polyurethane-TiO2 nanocomposite membranes. Korean J Chem Eng 32(1):97–103

    Article  CAS  Google Scholar 

  27. Mândru M, Ciobanu C, Vlad S, Butnaru M, Lebrun L, Popa M (2013) Characteristics of polyurethane-based sustained release membranes for drug delivery. Cent Eur J Chem 11(4):542–553

    Google Scholar 

  28. Mondal S, Hu J (2006) Structural characterization and mass transfer properties of nonporous segmented polyurethane membrane: influence of hydrophilic and carboxylic group. J Membr Sci 274(1–2):219–226

    Article  CAS  Google Scholar 

  29. Zhou D, Choi P (2012) Molecular dynamics study of water diffusivity at low concentrations in non-swollen and swollen polyurethanes. Polymer 53(15):3253–3260

    Article  CAS  Google Scholar 

  30. Tan K, Obendorf SK (2007) Fabrication and evaluation of electrospun nanofibrous antimicrobial nylon 6 membranes. J Membr Sci 305(1–2):287–298

    Article  CAS  Google Scholar 

  31. Chen C-J, Tseng I-H, Lu H-T, Tseng W-Y, Tsai M-H, Huang S-L (2011) Thermal and tensile properties of HTPB-based PU with PVC blends. Mater Sci Eng A 528(15):4917–4923

    Article  CAS  Google Scholar 

  32. Mahkam M, Sharifi-Sanjani N (2003) Preparation of new biodegradable polyurethanes as a therapeutic agent. Polym Degrad Stab 80(2):199–202

    Article  CAS  Google Scholar 

  33. Yu L, Zhou L, Ding M, Li J, Tan H, Fu Q et al (2011) Synthesis and characterization of novel biodegradable folate conjugated polyurethanes. J Colloid Interface Sci 358(2):376–383

    Article  CAS  PubMed  Google Scholar 

  34. Sengur-Tasdemir R, Urper GM, Turken T, Genceli EA, Tarabara VV, Koyuncu I (2016) Combined effects of hollow fiber fabrication conditions and casting mixture composition on the properties of polysulfone ultrafiltration membranes. Sep Sci Technol 51(12):2070–2079

    Article  CAS  Google Scholar 

  35. Semsarzadeh MA, Ghalei B (2013) Preparation, characterization and gas permeation properties of polyurethane–silica/polyvinyl alcohol mixed matrix membranes. J Membr Sci 432:115–125

    Article  CAS  Google Scholar 

  36. Jonquières A, Roizard D, Lochon P (1996) Polymer design for pervaporation membranes: influence of the soft segment size of block copolymers (polyurethaneimides or polyureaimides) on their pervaporation features. J Membr Sci 118(1):73–84

    Article  Google Scholar 

  37. Ma R, Zhao T, Pu H, Sun M, Cui Y, Xie X (2020) Synthesis of Interpenetrating Polymer Networks Based on Triisocyanate-Terminated and Modified Poly (urethane-imide) with Superior Mechanical Properties. ACS Omega 5(12):6911–6918

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Cheng B-X, Gao W-C, Ren X-M, Ouyang X-Y, Zhao Y, Zhao H et al (2022) A review of microphase separation of polyurethane: characterization and applications. Poly Test. https://doi.org/10.1002/cben.202100002

    Article  Google Scholar 

  39. Turan D (2021) Water vapor transport properties of polyurethane films for packaging of respiring foods. Food Eng Rev 13(1):54–65

    Article  CAS  Google Scholar 

  40. Xu Z, Croft ZL, Guo D, Cao K, Liu G (2021) Recent development of polyimides: synthesis, processing, and application in gas separation. J Polym Sci 59(11):943–962

    Article  CAS  Google Scholar 

  41. Ameri E, Sadeghi M, Zarei N, Pournaghshband A (2015) Enhancement of the gas separation properties of polyurethane membranes by alumina nanoparticles. J Membr Sci 479:11–19

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors also extend their appreciation to the Deanship of scientific research at King Khalid University for funding this work through the research groups program under Grant No. RGP.1/259/42. The authors have no other relevant affiliations or financial involvement with any organization or entity with a financial interest in or financial conflict with the subject matter or materials discussed in the manuscript apart from those disclosed.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ajmal Khan or Ahmed Al-Harrasi.

Ethics declarations

Conflict of interest

All authors confirm that this article content has no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shoukat, A., Zubair, M., Uddin, J. et al. Innovative synthesis of non-porous polyurethane membranes with enhanced mechanical, thermal and adsorption properties. Polym. Bull. 80, 7429–7450 (2023). https://doi.org/10.1007/s00289-022-04383-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-022-04383-z

Keywords

Navigation