Skip to main content
Log in

Detection of N-hexanoyl-L-homoserine lactone via MIP-based QCM sensor: preparation and characterization

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

While high living organisms use sounds and words to communicate with each other, bacteria provide this function with some communication molecules. These communication molecules are expressed as “Quorum Sensing” (QS) or chemicals produced by the environment sensing system and used by bacteria to communicate. This case revealed that bacteria are talking. N-acyl-homoserine-lactones (AHL), which are the main signaling molecules of gram-negative bacteria, may express the pathogenic factors, and Quorum Sensing (QS) system may play an important role in the identification of the being virus. AHLs are produced at low concentrations that are difficult to detect with general techniques. In this study, molecularly imprinted polymeric membranes, which are specific to lactone with 6-carbons (C6-HSL) were prepared on QCM chips, and molecularly imprinted QCM chips were utilized to detect N-hexanoyl-L-homoserine lactone (C6-HSL) with high sensitivity from the aqueous medium. Characterization of the synthesized polymers were analyzed by AFM, SEM, contact angle and FTIR-ATR spectrophotometer analyzes. The maximum C6-HSL adsorption on the C6-HSL imprinted QCM chip surface was observed at 1000 ng/mL concentration, pH 7.0. Moreover, GC–MS results correlated with the results of our studies, and they confirmed the sensitivity of synthesized polymers toward C6-HSL in solution containing competitor molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Turan NB, Chormey DS, Büyükpınar Ç et al (2017) Quorum sensing: Little talks for an effective bacterial coordination. TrAC Trends Anal Chem 91:1–11. https://doi.org/10.1016/j.trac.2017.03.007

    Article  CAS  Google Scholar 

  2. Acet Ö, Erdönmez D, Acet BÖ, Odabaşı M (2021) N-acyl homoserine lactone molecules assisted quorum sensing: effects consequences and monitoring of bacteria talking in real life. Arch Microbiol 203(7):3739–3749

    Article  CAS  PubMed  Google Scholar 

  3. Schauder S, Bassler BL (2001) The languages of bacteria. Genes Dev 15:1468–1480. https://doi.org/10.1101/gad.899601

    Article  CAS  PubMed  Google Scholar 

  4. Galloway WRJD, Hodgkinson JT, Bowden SD et al (2011) Quorum sensing in gram-negative bacteria: small-molecule modulation of AHL and AI-2 quorum sensing pathways. Chem Rev 111:28–67. https://doi.org/10.1021/cr100109t

    Article  CAS  PubMed  Google Scholar 

  5. Jiang H, Jiang D, Shao J, Sun X (2016) Magnetic molecularly imprinted polymer nanoparticles based electrochemical sensor for the measurement of Gram-negative bacterial quorum signaling molecules (N-acyl-homoserine-lactones). Biosens Bioelectron 75:411–419. https://doi.org/10.1016/j.bios.2015.07.045

    Article  CAS  PubMed  Google Scholar 

  6. Cataldi TRI, Bianco G, Palazzo L, Quaranta V (2007) Occurrence of N-acyl-l-homoserine lactones in extracts of some gram-negative bacteria evaluated by gas chromatography–mass spectrometry. Anal Biochem 361:226–235. https://doi.org/10.1016/j.ab.2006.11.037

    Article  CAS  PubMed  Google Scholar 

  7. Kim Y-W, Sung C, Lee S et al (2015) MALDI-MS-based quantitative analysis for ketone containing homoserine lactones in pseudomonas aeruginosa. Anal Chem 87:858–863. https://doi.org/10.1021/ac5039362

    Article  CAS  PubMed  Google Scholar 

  8. Middleton B, Rodgers HC, Cámara M et al (2002) Direct detection of N-acylhomoserine lactones in cystic fibrosis sputum. FEMS Microbiol Lett 207:1–7. https://doi.org/10.1111/j.1574-6968.2002.tb11019.x

    Article  CAS  PubMed  Google Scholar 

  9. Purohit AA, Johansen JA, Hansen H et al (2013) Presence of acyl-homoserine lactones in 57 members of the vibrionaceae family. J Appl Microbiol 115:835–847. https://doi.org/10.1111/jam.12264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Chen JY, Penn LS, Xi J (2018) Quartz crystal microbalance: sensing cell-substrate adhesion and beyond. Biosens Bioelectron 99:593–602

    Article  CAS  PubMed  Google Scholar 

  11. Jandas PJ, Prabakaran K, Luo J, MG DH, (2021) Effective utilization of quartz crystal microbalance as a tool for biosensing applications. Sensors Actuators A Phys 331:113020

    Article  Google Scholar 

  12. Na Songkhla S, Nakamoto T (2021) Overview of quartz crystal microbalance behavior analysis and measurement. Chemosensors 9:350

    Article  CAS  Google Scholar 

  13. Lim HJ, Saha T, Tey BT et al (2020) Quartz crystal microbalance-based biosensors as rapid diagnostic devices for infectious diseases. Biosens Bioelectron 168:112513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Haupt K, Mosbach K (2000) Molecularly Imprinted polymers and Their Use in biomimetic sensors. Chem Rev 100:2495–2504. https://doi.org/10.1021/cr990099w

    Article  CAS  PubMed  Google Scholar 

  15. Romero M, Acuna L, Otero A (2012) Patents on quorum quenching: interfering with bacterial communication as a strategy to fight infections. Recent Pat Biotechnol 6:2–12. https://doi.org/10.2174/187220812799789208

    Article  CAS  PubMed  Google Scholar 

  16. Golkar Z, Bagasra O, Pace DG (2014) Bacteriophage therapy: a potential solution for the antibiotic resistance crisis. J Infect Dev Ctries 8:129–136. https://doi.org/10.3855/jidc.3573

    Article  PubMed  Google Scholar 

  17. Garcia Lopez J, Piletska EV, Whitcombe MJ et al (2019) Application of molecularly imprinted polymer nanoparticles for degradation of the bacterial autoinducer N -hexanoyl homoserine lactone. Chem Commun 55:2664–2667. https://doi.org/10.1039/C8CC07685E

    Article  CAS  Google Scholar 

  18. Tajani AS, Soheili V, Moosavi F et al (2022) Ultra selective and high-capacity dummy template molecular imprinted polymer to control quorum sensing and biofilm formation of Pseudomonas aeruginosa. Anal Chim Acta 1199:339574

    Article  CAS  PubMed  Google Scholar 

  19. Adeniyi OK, Ngqinambi A, Mashazi PN (2020) Ultrasensitive detection of anti-p53 autoantibodies based on nanomagnetic capture and separation with fluorescent sensing nanobioprobe for signal amplification. Biosens Bioelectron 170:112640. https://doi.org/10.1016/j.bios.2020.112640

    Article  CAS  PubMed  Google Scholar 

  20. Önal B, Acet Ö, Sanz R et al (2019) Co-evaluation of interaction parameters of genomic and plasmid DNA for a new chromatographic medium. Int J Biol Macromol 141:1183–1190. https://doi.org/10.1016/j.ijbiomac.2019.09.068

    Article  CAS  PubMed  Google Scholar 

  21. Acet Ö, Aksoy NH, Erdönmez D, Odabaşı M (2018) Determination of some adsorption and kinetic parameters of α-amylase onto Cu+2-PHEMA beads embedded column. Artif Cells, Nanomedicine Biotechnol 46:S538–S545. https://doi.org/10.1080/21691401.2018.1501378

    Article  CAS  Google Scholar 

  22. Wu H, Shi C, Zhu Q et al (2021) Capillary-driven blood separation and in-situ electrochemical detection based on 3D conductive gradient hollow fiber membrane. Biosens Bioelectron 171:112722. https://doi.org/10.1016/j.bios.2020.112722

    Article  CAS  PubMed  Google Scholar 

  23. Mozammal Hossain MD, Moon J-M, Gurudatt NG et al (2019) Separation detection of hemoglobin and glycated hemoglobin fractions in blood using the electrochemical microfluidic channel with a conductive polymer composite sensor. Biosens Bioelectron 142:111515. https://doi.org/10.1016/j.bios.2019.111515

    Article  CAS  PubMed  Google Scholar 

  24. Noma SAA, Ulu A, Acet Ö et al (2020) Comparative study of ASNase immobilization on tannic acid-modified magnetic Fe 3 O 4 /SBA-15 nanoparticles to enhance stability and reusability. New J Chem 44:4440–4451. https://doi.org/10.1039/D0NJ00127A

    Article  CAS  Google Scholar 

  25. Gurbuz F, Akpınar Ş, Ozcan S et al (2019) Reducing arsenic and groundwater contaminants down to safe level for drinking purposes via Fe3+-attached hybrid column. Environ Monit Assess 191:722. https://doi.org/10.1007/s10661-019-7862-9

    Article  CAS  PubMed  Google Scholar 

  26. Baran NY, Acet Ö, Odabaşı M (2017) Efficient adsorption of hemoglobin from aqueous solutions by hybrid monolithic cryogel column. Mater Sci Eng C 73:15–20. https://doi.org/10.1016/j.msec.2016.12.036

    Article  CAS  Google Scholar 

  27. Yavuz H, Odabaşi M, Akgöl S, Denizli A (2005) Immobilized metal affinity beads for ferritin adsorption. J Biomater Sci Polym Ed. https://doi.org/10.1163/1568562053783713

    Article  PubMed  Google Scholar 

  28. Cömert ŞC, Özgür E, Uzun L, Odabaşı M (2022) The creation of selective imprinted cavities on quartz crystal microbalance electrode for the detection of melamine in milk sample. Food Chem 372:131254

    Article  Google Scholar 

  29. Ansari S, Masoum S (2019) Molecularly imprinted polymers for capturing and sensing proteins: current progress and future implications. TrAC Trends Anal Chem 114:29–47

    Article  CAS  Google Scholar 

  30. Anantha-Iyengar G, Shanmugasundaram K, Nallal M et al (2019) Functionalized conjugated polymers for sensing and molecular imprinting applications. Prog Polym Sci 88:1–129

    Article  CAS  Google Scholar 

  31. BelBruno JJ (2018) Molecularly imprinted polymers. Chem Rev 119:94–119

    Article  PubMed  Google Scholar 

  32. Piletsky S, Canfarotta F, Poma A et al (2020) Molecularly imprinted polymers for cell recognition. Trends Biotechnol 38:368–387

    Article  CAS  PubMed  Google Scholar 

  33. Scheller FW, Zhang X, Yarman A et al (2019) Molecularly imprinted polymer-based electrochemical sensors for biopolymers. Curr Opin Electrochem 14:53–59. https://doi.org/10.1016/j.coelec.2018.12.005

    Article  CAS  Google Scholar 

  34. Odabaşı M, Uzun L, Baydemir G et al (2018) Cholesterol imprinted composite membranes for selective cholesterol recognition from intestinal mimicking solution. Coll Surf B Biointerfaces 163:266–274. https://doi.org/10.1016/j.colsurfb.2017.12.033

    Article  CAS  Google Scholar 

  35. Odabaşi M, Say R, Denizli A (2007) Molecular imprinted particles for lysozyme purification. Mater Sci Eng C 27:90–99. https://doi.org/10.1016/j.msec.2006.03.002

    Article  CAS  Google Scholar 

  36. Yola ML, Uzun L, Özaltın N, Denizli A (2014) Development of molecular imprinted nanosensor for determination of tobramycin in pharmaceuticals and foods. Talanta 120:318–324

    Article  CAS  PubMed  Google Scholar 

  37. Serinbaş A, Önal B, Acet Ö et al (2020) A new application of inorganic sorbent for biomolecules: IMAC practice of Fe3+-nano flowers for DNA separation. Mater Sci Eng C 113:111020. https://doi.org/10.1016/j.msec.2020.111020

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by The Scientific and Technological Research Council of Turkey (Grant Number:119Z184) and Aksaray University Scientific Research Projects Coordination, (Grant Number:2018/060). Authors gratefully acknowledge the use of the services and facilities of Scientific and Technological Application and Research Center of Aksaray University (ASUBTAM).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehmet Odabaşı.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Acet, Ö., Odabaşı, M. Detection of N-hexanoyl-L-homoserine lactone via MIP-based QCM sensor: preparation and characterization. Polym. Bull. 80, 6657–6674 (2023). https://doi.org/10.1007/s00289-022-04377-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-022-04377-x

Keywords

Navigation