Skip to main content
Log in

Antibacterial and cytotoxicity assessment of poly (N-vinyl imidazole)/nitrogen-doped graphene quantum dot nanocomposite hydrogels

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Two series of pH-sensitive poly (N-vinyl imidazole)/nitrogen-doped graphene quantum dots nanocomposite hydrogels (PVI/NGQD) were synthesized successfully via an in situ polymerization approach. The polymerization was carried out with different feeding ratios of N-vinyl imidazole (0.75–2.00 mol/L), MBA (N,N′- methylene-bis-acrylamide) (0.02–0.18 mol/L) or DIL (3,3′ -divinyl-1,1′ (1,6-hexanediyl) di-imidazolium dibromide) (0.05–0.08 mol/L) as a crosslinker in the presence of NGQD nanoparticles (0.3–1.0 wt%) at 70 °C for 7 h. The pH-dependent swelling behavior was improved for DIL-based PVI/NGQD by increasing the contents of VI and NGQDs, while an increase in crosslinker value led to a reduced swelling degree. XRD and TGA results showed that the incorporation of NGQDs in hydrogel networks could increase the crystallinity and thermal stability of resultant PVI/NGQD nanocomposite. SEM images showed clear changes in surface morphology after incorporation of the NGQDs within the PVI hydrogel matrix, resulting in more porous network channels. Mechanical examinations indicated that MBA-based PVI/NGQD has higher compressive stress and Young’s modulus, which improves with increasing NGQDs content due to increase in crosslinking density of nanocomposite. Therefore, MBA-based hydrogels become stiffer and more brittle than less-strength elastic DIL-based hydrogels. The prepared PVI/NGQD nanocomposite exhibited significant antibacterial activity against Gram-negative bacteria. In addition, the results showed that NGQDs and ionic DIL crosslinker have improved the antibacterial activity of PVI/NGQD hydrogels and decreased the degradation process. Finally, cell proliferation and cytotoxicity studies represented that these nanocomposite hydrogels can be considered as a potential candidate for biomedical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Buwalda SJ, Boere KW, Dijkstra PJ, Feijen J, Vermonden T, Hennink WE (2014) Hydrogels in a historical perspective: From simple networks to smart materials. J Control Release 190:254–273

    CAS  PubMed  Google Scholar 

  2. Maitra J, Shukla VK (2014) Cross-linking in hydrogels-a review. Am J Polym Sci 4:25–31

    Google Scholar 

  3. Chirani N, Yahia L, Gritsch L, Motta FL, Chirani S, Farè S (2015) History and applications of hydrogels. J Biomed Sci 4:1–23

    Google Scholar 

  4. Hunt JN, Feldman KE, Lynd NA, Deek J, Campos LM, Spruell JM, Hernandez BM, Kramer EJ, Hawker CJ (2011) high modulus hydrogels driven by ionic coacervation. Adv Mater 23:2327–2331

    CAS  PubMed  Google Scholar 

  5. Ahmed EM (2015) Hydrogel: Preparation, characterization, and applications: a review. J Adv Res 6:105–121

    CAS  PubMed  Google Scholar 

  6. Rizwan M, Yahya R, Hassan A, Yar M, Azzahari AD, Selvanathan V, Sonsudin F, Abouloula CN (2017) pH sensitive hydrogels in drug delivery: Brief history, properties, swelling, and release mechanism, material selection and applications. Polymers 9:137

    PubMed  PubMed Central  Google Scholar 

  7. Hendi A, Hassan MU, Elsherif M, Alqattan B, Park S, Yetisen AK, Butt H (2020) Healthcare applications of pH-sensitive hydrogel-based devices: a review. Int J Nanomedicine 15:3887

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Soliman SMA, Sanad MF, Shalan AE (2021) Synthesis, characterization and antimicrobial activity

  9. Cheng L, Zhang PB, Zhao YF, Zhu LP, Zhu BK, Xu YY (2015) Preparation and characterization of poly (N-vinyl imidazole) gel-filled nanofiltration membranes. J Membr Sci 492:380–391

    CAS  Google Scholar 

  10. Sabaa MW, Mohamed NA, Mohamed RR, Khalil NM, Abd El Latif SM (2010) Synthesis, characterization and antimicrobial activity of poly (N-vinyl imidazole) grafted carboxymethyl chitosan. Carbohydr Polym 79:998–1005

    CAS  Google Scholar 

  11. Singh B, Kumar A (2018) Radiation-induced graft copolymerization of N-vinyl imidazole onto moringa gum polysaccharide for making hydrogels for biomedical applications. Int J Biol Macromol 120:1369–1378

    CAS  PubMed  Google Scholar 

  12. Sabaa MW, Mohamed ME, Abdellatif MM, Soliman SM (2020) Antibacterial effect of novel grafted gelatin on gram-negative bacteria. Polym Bull 77:427–440

    CAS  Google Scholar 

  13. Mohamed RR, Elella MHA, Sabaa MW, Saad GR (2018) Synthesis of an efficient adsorbent hydrogel based on biodegradable polymers for removing crystal violet dye from aqueous solution. Cellulose 25:6513–6529

    CAS  Google Scholar 

  14. Kizhnyaev V, Petrova T, Pokatilov F, Zhitov R, Edel’shtein O, (2014) Synthesis of network poly (N-vinylimidazole) and properties of the related hydrogels. Polym Sci Ser B 56:645–649

    CAS  Google Scholar 

  15. Vives CM, Pastoriza A (2015) Poly (N-vinyl imidazole) hydrogels polymerized in molds of different materials. Eur Polym J 73:26–37

    CAS  Google Scholar 

  16. Mohamed RR, Seoudi RS, Sabaa MW (2012) Synthesis and characterization of antibacterial semi-interpenetrating carboxymethyl chitosan/poly (acrylonitrile) hydrogels. Cellulose 19:947–958

    CAS  Google Scholar 

  17. Gaharwar AK, Peppas NA, Khademhosseini A (2014) Nanocomposite hydrogels for biomedical applications. Biotechnol Bioeng 111:441–453

    CAS  PubMed  Google Scholar 

  18. Ali A, Ahmed S (2018) A review on chitosan and its nanocomposites in drug delivery. Int J Biol Macromol 109:273–286

    CAS  PubMed  Google Scholar 

  19. Vashist A, Kaushik A, Ghosal A, Bala J, Nikkhah-Moshaie R, Wani WA, Manickam P, Nair M (2018) Nanocomposite hydrogels: advances in nanofillers used for nanomedicine. Gels 4:75–90

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Lu H, Zhang S, Guo L, Li W (2017) Applications of graphene-based composite hydrogels: a review. RSC Adv 7:51008–51020

    CAS  Google Scholar 

  21. Phan LMT, Vo TAT, Hoang TX, Cho S (2021) Graphene integrated hydrogels based biomaterials in photothermal biomedicine. Nanomaterials 11:906–934

    PubMed  PubMed Central  Google Scholar 

  22. Bagheri M, Mahmoodzadeh A (2020) Polycaprolactone/graphene nanocomposites: synthesis, characterization and mechanical properties of electrospun nanofibers. J Inorg Organomet Polym Mater 30:1566–1577

    CAS  Google Scholar 

  23. Rakhshaei R, Namazi H, Hamishehkar H, Rahimi M (2020) Graphene quantum dot cross-linked carboxymethyl cellulose nanocomposite hydrogel for pH-sensitive oral anticancer drug delivery with potential bioimaging properties. Int J Biol Macromol 150:1121–1129

    CAS  PubMed  Google Scholar 

  24. Jampilek J, Kralova K (2021) Advances in drug delivery nanosystems using graphene-based materials and carbon nanotubes. Materials 14:1059–1098

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Afshar EG, Zarrabi A, Dehshahri A, Ashrafizadeh M, Dehghannoudeh G, Behnam B, Mandegary A, Pardakhty A, Mohammadinejad R, Tavakol S (2020) Graphene as a promising multifunctional nanoplatform for glioblastoma theranostic applications. FlatChem 22:100173

    Google Scholar 

  26. Lee HJ, Yook JG (2019) Graphene nanomaterials-based radio-frequency/microwave biosensors for biomaterials detection. Materials 12:952

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Sarabiyan Nejad S, Rezaei M, Bagheri M (2020) Polyurethane/Nitrogen-Doped Graphene Quantum Dot (N-GQD) nanocomposites: synthesis, characterization, thermal, mechanical and shape memory properties. Polym-Plast Technol Mater 59:398–416

    CAS  Google Scholar 

  28. Javanbakht S, Shaabani A (2019) Encapsulation of graphene quantum dot-crosslinked chitosan by carboxymethylcellulose hydrogel beads as a pH-responsive bio-nanocomposite for the oral delivery agent. Int J Biol Macromol 123:389–397

    CAS  PubMed  Google Scholar 

  29. Havanur S, Jagadeeshbabu P (2018) Role of graphene quantum dots synthesized through pyrolysis in the release behavior of temperature responsive poly (N, N-diethyl acrylamide) hydrogel loaded with doxorubicin. Int J Polym Anal Charact 23:606–620

    CAS  Google Scholar 

  30. Xu Q, Ji Y, Sun Q, Fu Y, Xu Y, Jin L (2019) Fabrication of cellulose nanocrystal/chitosan hydrogel for controlled drug release. Nanomaterials 9:253

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Khabibullin A, Alizadehgiashi M, Khuu N, Prince E, Tebbe M, Kumacheva E (2017) Injectable shear-thinning fluorescent hydrogel formed by cellulose nanocrystals and graphene quantum dots. Langmuir 33:12344–12350

    CAS  PubMed  Google Scholar 

  32. Massoudi S, Bagheri M, Hosseini M (2022) Poly (N-vinyl imidazole)/nitrogen doped graphene quantum dot nanocomposite hydrogel as an efficient metal ion adsorbent from aqueous systems. Iran Polym J 31:533–551

    CAS  Google Scholar 

  33. Hebeish A, Sharaf S (2015) Novel nanocomposite hydrogel for wound dressing and other medical applications. RSC adv 5:103036–103046

    CAS  Google Scholar 

  34. Khan AS, Man Z, Arvina A, Bustam MA, Nasrullah A, Ullah Z, Sarwono A, Muhammad N (2017) Dicationic imidazolium based ionic liquids: synthesis and properties. J Mol Liq 227:98–105

    CAS  Google Scholar 

  35. Xu X, Bai B, Ding C, Wang H, Suo Y (2015) Synthesis and properties of an ecofriendly superabsorbent composite by grafting the poly (acrylic acid) onto the surface of dopamine-coated sea buckthorn branches. Ind Eng Chem Res 54:3268–3278

    CAS  Google Scholar 

  36. Xie Y, Cheng D, Liu X, Han A (2019) Green Hydrothermal synthesis of N-doped carbon dots from biomass highland barley for the detection of Hg2+. Sensors 19:3169–3182

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Sharma A, Wilson GR, Dubey A (2016) Antibacterial activity of vinyl imidazole (VI) functionalized silica polymer nanocomposites (SBA/VI) against Gram negative and Gram positive bacteria. New J Chem 40:764–769

    CAS  Google Scholar 

  38. Hu F, Fang C, Wang Z, Liu C, Zhu B, Zhu L (2017) Poly (N-vinyl imidazole) gel composite porous membranes for rapid separation of dyes through permeating adsorption. Sep Purif Technol 188:1–10

    CAS  Google Scholar 

  39. Arthisree D, Joshi GM (2017) Study of polymer graphene quantum dot nanocomposites. J Mater Sci: Mater Electron. https://doi.org/10.1007/s10854-017-6825-6

    Article  Google Scholar 

  40. Zhao X, Gao W, Zhang H, Qiu X, Luo Y (2020) Graphene quantum dots in biomedical applications: recent advances and future challenges. In: Handbook of nanomaterials in analytical chemistry. pp 493–505

  41. Obando-Mora Á, Acevedo-Gutiérrez CA, Pérez-Cinencio JG, Sánchez-Garzón FS, Bucio E (2015) Synthesis of a pH-and thermo-responsive binary copolymer poly (N-vinylimidazole-co-N-vinylcaprolactam) grafted onto silicone films. Coatings 5:758–770

    CAS  Google Scholar 

  42. Porfarzollah A, Mohammad-Rezaei R, Bagheri M (2020) Ionic liquid-functionalized graphene quantum dots as an efficient quasi-solid-state electrolyte for dye-sensitized solar cells. J Mater Sci: Mater Electron 31:2288–2297

    CAS  Google Scholar 

  43. Patarroyo JL, Fonseca E, Cifuentes J, Salcedo F, Cruz JC, Reyes LH (2021) Gelatin-graphene oxide nanocomposite hydrogels for Kluyveromyces lactis encapsulation: potential applications in probiotics bioreactor packings. Biomolecules 11:922–931

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Othman SH, Othman NFL, Shapi’i RA, Ariffin SH, Yunos KFM (2021) Corn starch/chitosan nanoparticles/thymol bio-nanocomposite films for potential food packaging applications. Polymers 13:390–409

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Jiao C, Zhang G, Liu T, Peng X, Wang H (2020) Mechanically strong, tough and shape deformable poly(acrylamide- co -vinyl imidazole) hydrogels based on Cu 2+ complexation. ACS Appl Mater Interfaces 12:44205–44214

    CAS  PubMed  Google Scholar 

  46. Ganji F, Vasheghani FS, Vasheghani FE (2010) Theoretical description of hydrogel swelling: a review. Iran Polym J 19:375–398

    CAS  Google Scholar 

  47. Javanbakht S, Namazi H (2018) Doxorubicin loaded carboxymethyl cellulose/graphene quantum dot nanocomposite hydrogel films as a potential anticancer drug delivery system. Mater Sci Eng C 87:50–59

    CAS  Google Scholar 

  48. Ding H, Zhang XN, Zheng SY, Song Y, Wu ZL, Zheng Q (2017) Hydrogen bond reinforced poly (1-vinylimidazole-co-acrylic acid) hydrogels with high toughness, fast self-recovery, and dual pH-responsiveness. Polymer 131:95–103

    CAS  Google Scholar 

  49. Kim JH, Li Y, Kim MS, Kang SW, Jeong JH, Lee DS (2012) Synthesis and evaluation of biotin-conjugated pH-responsive polymeric micelles as drug carriers. Int J Pharm 427:435–442

    CAS  PubMed  Google Scholar 

  50. Zhao X, Lang Q, Yildirimer L, Lin ZY, Cui W, Annabi N, Ng KW, Dokmeci MR, Ghaemmaghami AM, Khademhosseini A (2016) Photocrosslinkable gelatin hydrogel for epidermal tissue engineering. Adv Healthc Mater 5:108–118

    CAS  PubMed  Google Scholar 

  51. Omer RA, Hama JR, Rashid RSM (2017) The effect of dextran molecular weight on the biodegradable hydrogel with oil, synthesized by the michael addition reaction. Adv in Polym Technol 36:120–127

    CAS  Google Scholar 

  52. Dharmalingam K, Bordoloi D, Kunnumakkara AB, Anandalakshmi R (2020) Preparation and characterization of cellulose-based nanocomposite hydrogel films containing CuO/Cu2O/Cu with antibacterial activity. Adv Polym Technol 137:49216

    CAS  Google Scholar 

  53. Bagheri M, Shateri S, Niknejad H, Entezami AA (2014) Thermosensitive biotinylated hydroxypropyl cellulose-based polymer micelles as a nano-carrier for cancer-targeted drug delivery. J Polym Res 21:1–15

    CAS  Google Scholar 

  54. Kim CH, Khil MS, Kim HY, Lee HU, Jahng KY (2006) An improved hydrophilicity via electrospinning for enhanced cell attachment and proliferation. J Biomed Mater Res Part B: Appl Biomater 78:283–290

    Google Scholar 

  55. Wang W, Caetano G, Ambler WS, Blaker JJ, Frade MA, Mandal P, Diver C, Bártolo P (2016) Enhancing the hydrophilicity and cell attachment of 3D printed PCL/graphene scaffolds for bone tissue engineering. Materials 9:992–1003

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Massoumeh Bagheri.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Massoudi, S., Bagheri, M., Beygi Khosrowshahi, Y. et al. Antibacterial and cytotoxicity assessment of poly (N-vinyl imidazole)/nitrogen-doped graphene quantum dot nanocomposite hydrogels. Polym. Bull. 80, 6471–6494 (2023). https://doi.org/10.1007/s00289-022-04371-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-022-04371-3

Keywords

Navigation