Skip to main content
Log in

Application of fractional calculus in the mechanical and dielectric correlation model of hybrid polymer films with different average molecular weight matrices

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

This research connects the mechanical and dielectric responses of three samples of hybrid polymer films composed of iron oxide nanoparticles and polyvinyl butyral (PVB) matrices with different average molecular weight. The mechanical responses were analyzed by dynamic mechanical analysis and the electrical responses by dynamic dielectric analysis, and they were interpreted by two fractional models, the Mechanical and the Dielectric Fractional Model. Correlation between mechanical and dielectric responses was determined for hybrid films. The comparison between fractional model parameters reveals that PVB matrix, with different average molecular weight, combined with the same nominal concentration of Fe-ions precursor, produces higher molecular mobility when average molecular weight is higher, and for the three samples, studied molecular mobility is higher for the dielectric manifestation of α-relaxation than the mechanic response. These results contribute in an important way to a better understanding of the molecular mobility of these materials where the possible applications require a certain compromise between the mechanical and electrical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Jeong JW, Hwang HS, Choi D, Ma BC, Jung J, Chang M (2020) Hybrid polymer/metal oxide thin films for high performance, flexible transistors. Micromachines 11:1–25

    Article  Google Scholar 

  2. Kumar P, Khan N, Kumar D (2016) Polyvinyl butyral (Pvb), versetile template for designing nanocomposite/composite materials: a review. Green Chem Technol Lett 2:185–194

    Article  Google Scholar 

  3. Meng X, Qi P, Sun J, Li H, Zhang S, Liu X, Gu X (2020) Fabrication of transparent clay-polymer hybrid coatings on PET film to enhance flame retardancy and oxygen barrier properties. Prog Org Coat 147:1–7

    Google Scholar 

  4. Minagaw K, Koyama K (2005) Electro- and magneto-rheological materials: stimuli-induced rheological functions. Curr Org Chem 9:1643–1663

    Article  Google Scholar 

  5. Lopes V, Steffen V, Savi MA (2016) Dynamics of smart systems and structures: concepts and applications. Dyn Smart Syst Struct Concepts Appl 1:189–215

    Google Scholar 

  6. Ladhar A, Arous M, Kaddami H, Ayadi Z, Kallel A (2017) Correlation between the dielectric and the mechanical behavior of cellulose nanocomposites extracted from the rachis of the date palm tree. IOP Conf Ser Mater Sci Eng 258:1–13

    Article  Google Scholar 

  7. Vendik IB, Vendik OG, Afanasjev VP, Sokolova IM, Chigirev DA, Castro RA, Jansen KMB, Ernst LJ, Timmermans P (2011) Correlation between electrical and mechanical properties of polymer composite. Proc Electron Compon Technol Conf 1:1697–1702

    Google Scholar 

  8. Rentería-Baltiérrez FY, Reyes-Melo ME, Puente-Córdova JG, López-Walle B (2021) Correlation between the mechanical and dielectric responses in polymer films by a fractional calculus approach. J Appl Polym Sci 138:1–14

    Article  Google Scholar 

  9. Encinar M, Guzmán E, Prolongo MG, Rubio R, Sandoval C, González F, Gargallo L, Radic D (2008) Dielectric and dynamic-mechanical study of the mobility of poly(t-butylacrylate) chains in diblock copolymers: polystyrene-b-poly(t-butylacrylate). Polymer 49:5650–5658

    Article  CAS  Google Scholar 

  10. Rentería-Baltiérrez FY, Reyes-Melo ME, López-Walle B, García-Loera AF (2019) The effect of iron oxide nanoparticles on the mechanical relaxation of magnetic polymer hybrid films composed of a polystyrene matrix, a fractional calculus approach. J Appl Polym Sci 136:1–14

    Article  Google Scholar 

  11. Katikaneani P, Vaddepally AK, Reddy Tippana N, Banavath R, Kommu S (2016) Phase transformation of iron oxide nanoparticles from hematite to maghemite in presence of polyethylene glycol: application as corrosion resistant nanoparticle paints. J Nanosci 2016:1–6

    Article  Google Scholar 

  12. Alcoutlabi M, Martínez-Vega JJ (1999) The effect of physical ageing on the relaxation time spectrum of amorphous polymers: the fractional calculus approach. J Mater Sci 34:2361–2369

    Article  CAS  Google Scholar 

  13. Reyes-Melo ME, Puente-Córdova JG, López-Walle B, Torres-Castro A, García-Loera AF (2018) Síntesis y caracterización de un material polimérico híbrido magnético de nanopartículas de óxido de hierro en una matriz de polivinil butiral. Ing Investig y Tecnol 19:113–123

    Google Scholar 

  14. Rentería-Baltiérrez FY, Reyes-Melo ME, López-Walle B, García-Loera AF, González-González VA (2020) A fractional calculus approach to study mechanical relaxations on hybrid films of Fe2O3 nanoparticles and polyvinyl butyral. J Therm Anal Calorim 139:113–124

    Article  Google Scholar 

  15. Carini G, Carini G, D’Angelo G, Federico M, Di MG, Bartolotta A (2018) Enhancing the molecular cooperativity of polyvinyl butyral using liquid additives. J Polym Sci Part B Polym Phys 56:340–346

    Article  CAS  Google Scholar 

  16. Puente Córdova J, Reyes Melo M, López Walle B (2017) Estudio de los mecanismos de conducción eléctrica en películas delgadas de PVB. Ingenierías 20:55–72

    Google Scholar 

  17. Pizzanelli S, Prevosto D, Labardi M, Guazzini T, Bronco S, Forte C, Calucci L (2017) Dynamics of poly(vinyl butyral) studied using dielectric spectroscopy and 1H NMR relaxometry. Phys Chem Chem Phys 19:31804–31812

    Article  CAS  PubMed  Google Scholar 

  18. Reyes-Melo ME, Martínez-Vega JJ, Guerrero-Salazar CA, Ortiz-Méndez U (2006) Mechanical and dielectric relaxation phenomena of poly(ethylene-2,6- napthalene dicarboxylate) by fractional calculus approach. J Appl Polym Sci 98:923–935

    Article  Google Scholar 

  19. Reyes-Melo E, Martinez-Vega J, Guerrero-Salazar C, Ortiz-Mendez U (2005) Application of fractional calculus to the modeling of dielectric relaxation phenomena in polymeric materials. J Appl Polym Sci 102:3354–3368

    Article  Google Scholar 

  20. Kremer F, Schönhals A (2003) Broadband dielectric spectroscopy. In: Springer International Publishing (ed) Dielectric and Mechanical Spectroscopy–a Comparison, 1st edn. Springer, New York, pp 597–623

Download references

Acknowledgements

In memory of Dr. Martín Edgar Reyes Melo. Some people leave footprints on our lives... We will keep you in our hearts and minds.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Y. Rentería-Baltiérrez.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Deceased: M. E. Reyes-Melo on 01 March 2022.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rentería-Baltiérrez, F.Y., Reyes-Melo, M.E., Puente-Córdova, J.G. et al. Application of fractional calculus in the mechanical and dielectric correlation model of hybrid polymer films with different average molecular weight matrices. Polym. Bull. 80, 6327–6347 (2023). https://doi.org/10.1007/s00289-022-04365-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-022-04365-1

Keywords

Navigation