Skip to main content
Log in

Synthesis of chitosan/PVA/metal oxide nanocomposite using underwater discharge plasma: characterization and antibacterial activities

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

In this work, the one-step synthesis of multicomponent polymer nanocomposites containing zinc oxide and cuprous oxide nanoparticles based on chitosan and polyvinyl alcohol was investigated using underwater pulsed discharge plasma. Direct initiation of electrical discharge between metal electrodes in a polymer solution enables reagent-free obtaining of metal oxide nanoparticles with an average diameter of about 30 nm. Transmission electron microscopy observations showed °that metal oxide nanoparticles uniformly dispersed in polymer matrix. It has been established that a partial destruction of chitosan occurs with the formation of glucosamine, N-acetylglucosamine, and delta-mannitol under the action of the discharge. The polymer film containing 0.35% Cu2O and 3.41% ZnO nanoparticles demonstrated the highest antimicrobial activity Escherichia coli, Staphylococcus albicans, and Bacillus subtilis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Zhou K, Wang R, Xu B, Li Y (2006) Synthesis, characterization and catalytic properties of CuO nanocrystals with various shapes. Nanotechnology 17:3939

    Article  CAS  Google Scholar 

  2. Fernandez-Garcia M, Martinez-Arias A, Hanson JC, Rodriguez JA (2004) Nanostructured oxides in chemistry: characterization and properties. Chem Rev 104(9):4063–4104

    Article  CAS  PubMed  Google Scholar 

  3. Inoue KI, Takano H, Yanagisawa R, Koike E, Shimada A (2009) Size effects of latex nanomaterials on lung inflammation in mice. Toxicol Appl Pharmacol 234(1):68–76

    Article  CAS  PubMed  Google Scholar 

  4. Khashan KS, Sulaiman GM, Abdulameer FA (2016) Synthesis and antibacterial activity of CuO nanoparticles suspension induced by laser ablation in liquid. Arab J Sci Eng 41(1):301–310

    Article  CAS  Google Scholar 

  5. Park THJ, Joo J, Kwon SG, Jang Y (2007) Synthesis of monodisperse spherical nanocrystals. Angew Chem Int Ed Engl 46:4630–4660

    Article  CAS  PubMed  Google Scholar 

  6. Marabelli F, Parravicini GB, Salghetti-Drioli F (1995) Optical gap of CuO. Phys Rev B 52(3):1433

    Article  CAS  Google Scholar 

  7. El-Trass A, ElShamy H, El-Mehasseb I, El-Kemary M (2012) CuO nanoparticles: synthesis, characterization, optical properties and interaction with amino acids. Appl Surf Sci 258(7):2997–3001

    Article  CAS  Google Scholar 

  8. Ferdous Z, Nemmar A (2020) Health impact of silver nanoparticles: a review of the bio distribution and toxicity following various routes of exposure. Int J Mol Sci 21(7):2375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Yousef JM, Danial EN (2012) In vitro antibacterial activity and minimum inhibitory concentration of zinc oxide and nano-particle zinc oxide against pathogenic strains. J Health Sci 2(4):38–42

    Google Scholar 

  10. Verdier T, Coutand M, Bertron A, Roques C (2014) Antibacterial activity of TiO2 photocatalyst alone or in coatings on E. coli: the influence of methodological aspects. Coatings 4(3):670–686

    Article  Google Scholar 

  11. Kumar A, Pandey AK, Singh SS, Shanker R, Dhawan A (2011) Cellular response to metal oxide nanoparticles in bacteria. J Biomed Nanotechnol 7(1):102–103

    Article  PubMed  Google Scholar 

  12. Kumar A, Pandey AK, Singh SS, Shanker R, Dhawan A (2011) Engineered zinc oxide and titanium dioxide nanoparticles induce oxidative stress and DNA damage leading to reduced viability of Escherichia coli. Free Radic Biol Med 51:1872–1881

    Article  CAS  PubMed  Google Scholar 

  13. Keller AA, Wang H, Zhou D, Lenihan HS, Cherr G, Cardinale BJ, Ji Z (2010) Stability and aggregation of metal oxide nanoparticles in natural aqueous matrices. Environ Sci Technol 44(6):1962–1967

    Article  CAS  PubMed  Google Scholar 

  14. Tso CP, Zhung CM, Shih YH, Tseng YM, Wu SC, Doong RA (2010) Stability of metal oxide nanoparticles in aqueous solutions. Water Sci Technol 61(1):127–133

    Article  CAS  PubMed  Google Scholar 

  15. Sarkar S, Guibal E, Quignard F, SenGupta AK (2012) Polymer-supported metals and metal oxide nanoparticles: synthesis, characterization, and applications. J Nanopart Res 14(2):1–24

    Article  Google Scholar 

  16. Li Q, Dunn ET, Grandmaison EW, Goosen MF (1992) Applications and properties of chitosan. J Bioact Compat Polym 7(4):370–397

    Article  CAS  Google Scholar 

  17. Liang Y, Zhao X, Ma PX, Guo B, Du Y, Han X (2019) pH-responsive injectable hydrogels with mucosal adhesiveness based on chitosan-grafted-dihydrocaffeic acid and oxidized pullulan for localized drug delivery. J Colloid Interface Sci 536:224–234

    Article  CAS  PubMed  Google Scholar 

  18. Zhao X, Li P, Guo B, Ma PX (2015) Antibacterial and conductive injectable hydrogels based on quaternized chitosan-graft-polyaniline/oxidized dextran for tissue engineering. Acta Biomater 26:236–248

    Article  CAS  PubMed  Google Scholar 

  19. Rinaudo M (2006) Chitin and chitosan: properties and applications. Prog Polym Sci 31(7):603–632

    Article  CAS  Google Scholar 

  20. Zhao X, Wu H, Guo B, Dong R, Qiu Y, Ma PX (2017) Antibacterial anti-oxidant electroactive injectable hydrogel as self-healing wound dressing with hemostasis and adhesiveness for cutaneous wound healing. Biomaterials 122:34–47

    Article  CAS  PubMed  Google Scholar 

  21. Perelshtein I, Ruderman E, Perkas N, Tzanov T, Beddow J, Joyce E, Gedanken A (2013) Chitosan and chitosan–ZnO-based complex nanoparticles: formation, characterization, and antibacterial activity. J Mater Chem B 1(14):1968–1976

    Article  CAS  PubMed  Google Scholar 

  22. Mbhele ZH, Salemane MG, Van Sittert CGCE, Nedeljković JM, Djoković V, Luyt AS (2003) Fabrication and characterization of silver− polyvinyl alcohol nanocomposites. Chem Mater 15(26):5019–5024

    Article  CAS  Google Scholar 

  23. Jannesari M, Varshosaz J, Morshed M, Zamani M (2011) Composite poly (vinyl alcohol)/poly (vinyl acetate) electrospun nanofibrous mats as a novel wound dressing matrix for controlled release of drugs. Int J Nanomed 6:993

    CAS  Google Scholar 

  24. Venkataprasanna KS, Prakash J, Vignesh S, Bharath G, Venkatesan M, Banat F, Venkatasubbu GD (2020) Fabrication of Chitosan/PVA/GO/CuO patch for potential wound healing application. Int J Biol Macromol 143:744–762

    Article  CAS  PubMed  Google Scholar 

  25. Baghaie S, Khorasani MT, Zarrabi A, Moshtaghian J (2017) Wound healing properties of PVA/starch/chitosan hydrogel membranes with nano Zinc oxide as antibacterial wound dressing material. J Biomater Sci Polym Ed 28(18):2220–2241

    Article  CAS  PubMed  Google Scholar 

  26. Khorasani MT, Joorabloo A, Adeli H, Milan PB, Amoupour M (2021) Enhanced antimicrobial and full-thickness wound healing efficiency of hydrogels loaded with heparinized ZnO nanoparticles: in vitro and in vivo evaluation. Int J Biol Macromol 166:200–212

    Article  CAS  PubMed  Google Scholar 

  27. Abdeen ZI, El Farargy AF, Negm NA (2018) Nanocomposite framework of chitosan/polyvinyl alcohol/ZnO: preparation, characterization, swelling and antimicrobial evaluation. J Mol Liq 250:335–343

    Article  CAS  Google Scholar 

  28. Sirotkin NA, Khlyustova AV, Titov VA, Krayev AS, Nikitin DI, Dmitrieva OA, Agafonov AV (2020) Synthesis and photocatalytic activity of WO3 nanoparticles prepared by underwater impulse discharge. Plasma Chem Plasma Process 40(2):571–587

    Article  CAS  Google Scholar 

  29. Khlyustova A, Sirotkin N, Kraev A, Titov V, Agafonov A (2021) Parameters of underwater plasma as a factor determining the structure of oxides (Al, Cu, and Fe). Materialia 16:101081

    Article  CAS  Google Scholar 

  30. Khlyustova AV, Sirotkin NA, Kraev AS, Titov VA, Agafonov AV (2021) Synthesis and characterization of titanium oxide nanoparticles by plasma in contact with liquid. Plasma Chem Plasma Process 41(2):643–657

    Article  CAS  Google Scholar 

  31. Morent R, De Geyter N, Verschuren J, De Clerck K, Kiekens P, Leys C (2008) Non-thermal plasma treatment of textiles. Surf Coat Technol 202(14):3427–3449

    Article  CAS  Google Scholar 

  32. Joshi R, Schulze RD, Meyer-Plath A, Friedrich JF (2008) Selective surface modification of poly (propylene) with OH and COOH groups using liquid-plasma systems. Plasma Processes Polym 5(7):695–707

    Article  CAS  Google Scholar 

  33. Khlyustova A, Sirotkin N, Kraev A, Agafonov A, Titov V (2021) Effect of metal oxides added onto polyvinyl alcohol via pulsed underwater plasma on their thermal, electrical and dielectric properties. J Appl Polym Sci 138(40):51174

    Article  CAS  Google Scholar 

  34. Sirotkin NA, Gurina DL, Khlyustova AV, Costerin DY, Naumova IK, Titov VA, Agafonov AV (2021) Experimental and computational investigation of polylactic acid/silver-NP nanocomposite with antimicrobial activity prepared by plasma in liquid. Plasma Processes Polym 18(2):2000169

    Article  CAS  Google Scholar 

  35. Sirotkin N, Khlyustova A, Costerin D, Naumova I, Titov V, Agafonov A (2022) Applications of plasma synthesized ZnO, TiO2, and Zn/TiOx nanoparticles for making antimicrobial wound-healing viscose patches. Plasma Processes Polym 19(1):100093

    Article  Google Scholar 

  36. Sekhon JS, Verma SS (2011) Cu, CuO, and Cu2O nanoparticle plasmons for enhanced scattering in solar cells. In: Taylor A (ed) Renewable energy and the environment, OSA technical digest (CD). Optica Publishing Group, paper JWE22

    Google Scholar 

  37. Ogawa K, Yui T (1994) Effect of explosion on the crystalline polymorphism of chitin and chitosan. Biosci Biotechnol Biochem 58(5):968–969

    Article  CAS  Google Scholar 

  38. Samuels RJ (1981) Solid state characterization of the structure of chitosan films. J Polym Sci Polym Phys Ed 19(7):1081–1105

    Article  CAS  Google Scholar 

  39. Torrado S, Torrado S (2002) Characterization of physical state of mannitol after freeze-drying: effect of acetylsalicylic acid as a second crystalline cosolute. Chem Pharm Bull 50(5):567–570

    Article  CAS  Google Scholar 

  40. Miri A, Mahdinejad N, Ebrahimy O, Khatami M, Sarani M (2019) Zinc oxide nanoparticles: biosynthesis, characterization, antifungal and cytotoxic activity. Mater Sci Eng C 104:109981

    Article  CAS  Google Scholar 

  41. Khatami M, Alijani HQ, Heli H, Sharifi I (2018) Rectangular shaped zinc oxide nanoparticles: green synthesis by stevia and its biomedical efficiency. Ceram Int 44(13):15596–15602

    Article  CAS  Google Scholar 

  42. Kooti M, Matouri L (2010) Fabrication of nanosized cuprous oxide using fehling’s solution. Trans F Nanotechnol 17:73–78

    CAS  Google Scholar 

  43. Khowdiary MM, El-Henawy AA, Shawky AM, Sameeh MY, Negm NA (2017) Synthesis, characterization and biocidal efficiency of quaternary ammonium polymers silver nanohybrids against sulfate reducing bacteria. J Mol Liq 230:163–168

    Article  CAS  Google Scholar 

  44. Titov V, Nikitin D, Naumova I, Losev N, Lipatova I, Kosterin D, Pleskunov P, Perekrestov R, Sirotkin N, Khlyustova A, Agafonov A, Choukourov A (2020) Dual-mode solution plasma processing for the production of chitosan/Ag composites with the antibacterial effect. Materials 13(21):4821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Khlyustova A, Sirotkin N, Naumova I, Tarasov A, Titov V (2022) Solution plasma processing as an environmentally friendly method for low-molecular chitosan production. Plasma Chem Plasma Process 42:1–17

    Article  Google Scholar 

  46. Ali M, Gherissi A (2017) Synthesis and characterization of the composite material PVA/chitosan/5% sorbitol with different ratio of chitosan. Int J Mech Mechatron Eng 17:15–28

    Google Scholar 

  47. Bhadra P, Mitra MK, Das GC, Dey R, Mukherjee S (2011) Interaction of chitosan capped ZnO nanorods with Escherichia coli. Mater Sci Eng C 31(5):929–937

    Article  CAS  Google Scholar 

  48. Finch CA (1973) Polyvinyl alcohol; properties and applications. John Wiley & Sons

    Google Scholar 

  49. Khan I, Tango CN, Miskeen S, Oh DH (2018) Evaluation of nisin-loaded chitosan-monomethyl fumaric acid nanoparticles as a direct food additive. Carbohydr Polym 184:100–107

    Article  CAS  PubMed  Google Scholar 

  50. Sreenivasan K (1996) Thermal stability studies of some chitosanmetal ion complexes using differential scanning calorimetry. Polym Degrad Stab 52(1):85–87

    Article  CAS  Google Scholar 

  51. Vijaya Kumar R, Elgamiel R, Diamant Y, Gedanken A, Norwig J (2001) Sonochemical preparation and characterization of nanocrystalline copper oxide embedded in poly (vinyl alcohol) and its effect on crystal growth of copper oxide. Langmuir 17(5):1406–1410

    Article  Google Scholar 

  52. Abdelaziz M (2011) Cerium (III) doping effects on optical and thermal properties of PVA films. Physica B 406(6–7):1300–1307

    Article  CAS  Google Scholar 

  53. Ma X, Su Y, Sun Q, Wang Y, Jiang Z (2007) Enhancing the antifouling property of polyethersulfone ultrafiltration membranes through surface adsorption-crosslinking of poly (vinyl alcohol). J Membr Sci 300(1–2):71–78

    Article  CAS  Google Scholar 

  54. Liu R, Xu X, Zhuang X, Cheng B (2014) Solution blowing of chitosan/PVA hydrogel nanofiber mats. Carbohyd Polym 101:1116–1121

    Article  CAS  Google Scholar 

  55. Kowalczyk SP, Ley L, McFeely FR, Pollak RA, Shirley DA (1974) Relative effect of extra-atomic relaxation on auger and binding-energy shifts in transition metals and salts. Phys Rev B 9(2):381

    Article  CAS  Google Scholar 

  56. Espitia PJP, Soares NFF, Coimbra JSR, de Andrade NJ, Cruz RS (2012) Zinc oxide nanoparticles: synthesis, antimicrobial activity and food packaging applications. Food Bioprocess Technol 5:1447–1464

    Article  CAS  Google Scholar 

  57. Pan T, Song W, Cao X, Wang Y (2016) 3D bioplotting of gelatin/alginate scaffolds for tissue engineering: influence of crosslinking degree and pore architecture on physicochemical properties. J Mater Sci Technol 32(9):889–900

    Article  CAS  Google Scholar 

  58. Nie L, Chen D, Suo J, Zou P, Feng S, Yang Q, Ye S (2012) Physicochemical characterization and biocompatibility in vitro of biphasic calcium phosphate/polyvinyl alcohol scaffolds prepared by freeze-drying method for bone tissue engineering applications. Coll Surf B 100:169–176

    Article  CAS  Google Scholar 

  59. Tsai GJ, Su WH (1999) Antibacterial activity of shrimp chitosan against Escherichia coli. J Food Prot 62(3):239–243

    Article  CAS  PubMed  Google Scholar 

  60. Nel A, Xia T, Madler L, Li N (2006) Toxic potential of materials at the nanolevel. Science 311(5761):622–627

    Article  CAS  PubMed  Google Scholar 

  61. Ravishankar RV, Jamuna BA (2011) Nanoparticles and their potential application as antimicrobials. In: Méndez V (ed) Science against microbial pathogens, communicating current research and technological advances. Badajoz, Formatex, pp 197–209

    Google Scholar 

  62. Cleetus CM, Primo FA, Fregoso G, Raveendran NL, Noveron JC, Spencer CT, Joddar B (2020) Alginate hydrogels with embedded ZnO nanoparticles for wound healing therapy. Int J Nanomed 15:5097–5111

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was performed in the frame of the Government Assignment of the Ministry of Education and Science of Russia (no. 0092-2019-0003). The authors thank Dr. N. Fomina for performing XRD analyses, Dr. Yu. Fadeeva for conducting FTIR measurements and Dr. S. Guseinov for conducting thermogravimetric analysis at the Center for Sharing Scientific Equipment (the Upper Volga Regional Center for physico-chemical research, Russia), Dr. M. Voronova and Dr. N. Tabachkova for conducting TEM analysis at the center of joint use of scientific equipment (the Materials Science and Metallurgy, National University of Science and Technology MISIS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikolay Sirotkin.

Ethics declarations

Conflicts of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sirotkin, N., Khlyustova, A., Costerin, D. et al. Synthesis of chitosan/PVA/metal oxide nanocomposite using underwater discharge plasma: characterization and antibacterial activities. Polym. Bull. 80, 5655–5674 (2023). https://doi.org/10.1007/s00289-022-04348-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-022-04348-2

Keywords

Navigation