Skip to main content
Log in

The preparation and biomedical applications of self-assembled two-dimensional sandalose gum supported polyvinyl alcohol/alginate bio-polymeric nanoparticles

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

In this study, green self-assembled two-dimensional (2D) bio-preservatives were prepared for the sonosynthesis of sandalose gum-supported bio-polymeric nanoparticles (PNPs) with excellent biological activities. Polyvinyl alcohol (PVA), alginate (Alg), and sandalose gum (SG) were used to fabricate the green and low-cost bio-preservative. The prepared PVA/Alg/SG PNPs were confirmed using various characterization techniques such as SEM, HRTEM, XRD, FTIR, DLS, zeta potential, TGA, and DSC. According to the surface characterization results, the green self-assembled 2D PVA/Alg/SG PNPs had a spherical shape and particle diameters ranging from 10–50 nm. The thermal results showed that PVA/Alg/SG PNPs had good thermal stability. Furthermore, we investigated the antibacterial and antifungal activities of the self-assembled 2D PVA/Alg/SG PNPs as a safe bio-preservative against pathogenic microorganisms for use in biomedical applications. Consequently, our experimental results indicated a strong synergistic interaction between pathogenic microorganisms and the surface of the 2D nanostructure, resulting in the preservative efficacy of PNPs with a high performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ahlawat J, Henriquez G, Narayan M (2018) Enhancing the delivery of chemotherapeutics: Role of biodegradable polymeric nanoparticles. In Mol 23(9):2157. https://doi.org/10.3390/molecules23092157

    Article  CAS  Google Scholar 

  2. Arias-Moliz MT, Baca P, Solana C, Toledano M, Medina-Castillo AL, Toledano-Osorio M, Osorio R (2021) Doxycycline-functionalized polymeric nanoparticles inhibit Enterococcus faecalis biofilm formation on dentine. Int Endod J 54(3):413–426. https://doi.org/10.1111/iej.13436

    Article  CAS  PubMed  Google Scholar 

  3. Arshad M, Qayyum A, Shar GA, Soomro GA, Nazir A, Munir B, Iqbal M (2018) Zn-doped SiO2 nanoparticles preparation and characterization under the effect of various solvents: Antibacterial, antifungal and photocatlytic performance evaluation. J Photochem Photobiol, B 185:176–183. https://doi.org/10.1016/J.JPHOTOBIOL.2018.04.043

    Article  CAS  PubMed  Google Scholar 

  4. Barros CHN, Hiebner DW, Fulaz S, Vitale S, Quinn L, Casey E (2021) Synthesis and self-assembly of curcumin-modified amphiphilic polymeric micelles with antibacterial activity. J Nanobiotechnol 19(1):1–15. https://doi.org/10.1186/s12951-021-00851-2

    Article  CAS  Google Scholar 

  5. Bostanudin MF, Salam A, Mahmood A, Arafat M, Kaharudin AN, Sahudin S, Lazim AM, Azfaralariff A (2021) Formulation and In-vitro characterisation of cross-linked amphiphilic guar gum nanocarriers for percutaneous delivery of arbutin. J Pharm Sci. https://doi.org/10.1016/J.XPHS.2021.08.014

    Article  PubMed  Google Scholar 

  6. Cansell F, Aymonier C (2009) Design of functional nanostructured materials using supercritical fluids. J Supercrit Flu 47(3):508–516. https://doi.org/10.1016/J.SUPFLU.2008.10.002

    Article  CAS  Google Scholar 

  7. Chen G, He L, Zhang P, Zhang J, Mei X, Wang D, Zhang Y, Ren X, Chen Z (2020) Encapsulation of green tea polyphenol nanospheres in PVA/alginate hydrogel for promoting wound healing of diabetic rats by regulating PI3K/AKT pathway. Mater Sci Eng, C 110:110686. https://doi.org/10.1016/J.MSEC.2020.110686

    Article  CAS  Google Scholar 

  8. das Graças Nascimento Amorim A, Sánchez-Paniagua M, de Oliveira TM, Mafud AC, da Silva DA, de Souza de Almeida Leite JR, López-Ruiz B (2021) Synthesis, characterization and use of enzyme cashew gum nanoparticles for biosensing applications. J Mater Chem B. https://doi.org/10.1039/d1tb01164b

    Article  PubMed  Google Scholar 

  9. Dey D, Dharini V, Selvam SP, Sadiku ER, Kumar MM, Jayaramudu J, Gupta UN (2021) Physical, antifungal, and biodegradable properties of cellulose nanocrystals and chitosan nanoparticles for food packaging application. Mater Today: Proc 38:860–869. https://doi.org/10.1016/J.MATPR.2020.04.885

    Article  CAS  Google Scholar 

  10. Djebari S, Wrona M, Boudria A, Salafranca J, Nerin C, Bedjaoui K, Madani K (2021) Study of bioactive volatile compounds from different parts of Pistacia lentiscus L extracts and their antioxidant and antibacterial activities for new active packaging application. Food Control 120:107514. https://doi.org/10.1016/J.FOODCONT.2020.107514

    Article  CAS  Google Scholar 

  11. Ghosal K, Augustine R, Zaszczynska A, Barman M, Jain A, Hasan A, Kalarikkal N, Sajkiewicz P, Thomas S (2021) Novel drug delivery systems based on triaxial electrospinning based nanofibers. React Funct Polym 163:104895. https://doi.org/10.1016/J.REACTFUNCTPOLYM.2021.104895

    Article  CAS  Google Scholar 

  12. Golafshan N, Rezahasani R, Tarkesh Esfahani M, Kharaziha M, Khorasani SN (2017) Nanohybrid hydrogels of laponite: PVA-Alginate as a potential wound healing material. Carbohyd Polym 176:392–401. https://doi.org/10.1016/J.CARBPOL.2017.08.070

    Article  CAS  Google Scholar 

  13. Gómez-Sequeda N, Ruiz J, Ortiz C, Urquiza M, Torres R (2020) Potent and Specific Antibacterial Activity against Escherichia coli O157:H7 and Methicillin Resistant Staphylococcus aureus (MRSA) of G17 and G19 Peptides Encapsulated into Poly-Lactic-Co-Glycolic Acid (PLGA) Nanoparticles. Antibiot (Basel, Switzerland) 9(7):348. https://doi.org/10.3390/antibiotics9070384

    Article  CAS  Google Scholar 

  14. Hassani A, Azarian MMS, Ibrahim WN, Hussain SA (2020) Preparation, characterization and therapeutic properties of gum arabic-stabilized gallic acid nanoparticles. Sci Reports. https://doi.org/10.1038/s41598-020-71175-8

    Article  Google Scholar 

  15. Hosseini SF, Rezaei M, Zandi M, Farahmandghavi F (2016) Development of bioactive fish gelatin/chitosan nanoparticles composite films with antimicrobial properties. Food Chem 194:1266–1274. https://doi.org/10.1016/J.FOODCHEM.2015.09.004

    Article  CAS  PubMed  Google Scholar 

  16. Hulsey S, Absar S, Choi H (2018) Investigation of simultaneous ultrasonic processing of polymer-nanoparticle solutions for electrospinning of nanocomposite nanofibers. J Manuf Process 34:776–784. https://doi.org/10.1016/J.JMAPRO.2018.03.050

    Article  Google Scholar 

  17. İnan B, Özçimen D (2021) Preparation and characterization of microalgal oil loaded alginate/poly (vinyl alcohol) electrosprayed nanoparticles. Food Bioprod Process 129:105–114. https://doi.org/10.1016/J.FBP.2021.07.008

    Article  Google Scholar 

  18. Iqbal DN, Shafiq S, Khan SM, Ibrahim SM, Abubshait SA, Nazir A, Abbas M, Iqbal M (2020) Novel chitosan/guar gum/PVA hydrogel: Preparation, characterization and antimicrobial activity evaluation. Int J Biol Macromol 164:499–509. https://doi.org/10.1016/J.IJBIOMAC.2020.07.139

    Article  CAS  PubMed  Google Scholar 

  19. Islam MS, Karim MR (2010) Fabrication and characterization of poly(vinyl alcohol)/alginate blend nanofibers by electrospinning method. Colloids Surf, A 366(1–3):135–140. https://doi.org/10.1016/J.COLSURFA.2010.05.038

    Article  CAS  Google Scholar 

  20. Kannan B, Castelino K, Majumdar A (2003) Design of Nanostructured Heterojunction Polymer Photovoltaic Devices. Nano Lett 3(12):1729–1733. https://doi.org/10.1021/nl034810v

    Article  CAS  Google Scholar 

  21. Karakus S, Ilgar M, Tan E, Kahyaoglu IM, Tasaltin N, Albayrak I, Insel MA, Kilislioglu A (2020) Preparation and characterization of carboxymethyl cellulose/poly (ethylene glycol) -rosin pentaerythritolester polymeric nanoparticles: Role of intrinsic viscosity and surface morphology. Surf Interfaces 21:100642. https://doi.org/10.1016/j.surfin.2020.100642

    Article  CAS  Google Scholar 

  22. Karlsson J, Vaughan HJ, Green JJ (2018) Biodegradable polymeric nanoparticles for therapeutic cancer treatments. Annu Rev Chem Biomol Eng 9:105–127. https://doi.org/10.1146/annurev-chembioeng-060817-084055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kibasomba PM, Dhlamini S, Maaza M, Liu CP, Rashad MM, Rayan DA, Mwakikunga BW (2018) Strain and grain size of TiO2 nanoparticles from TEM, raman spectroscopy and XRD: The revisiting of the williamson-hall plot method. Results in Physics 9:628–635. https://doi.org/10.1016/J.RINP.2018.03.008

    Article  Google Scholar 

  24. Kim YH, Kim GH, Yoon KS, Shankar S, Rhim JW (2020) Comparative antibacterial and antifungal activities of sulfur nanoparticles capped with chitosan. Microb Pathog 144:104178. https://doi.org/10.1016/J.MICPATH.2020.104178

    Article  CAS  PubMed  Google Scholar 

  25. Kolahalam LA, Prasad KRS, Murali Krishna P, Supraja N (2021) Saussurea lappa plant rhizome extract-based zinc oxide nanoparticles: synthesis, characterization and its antibacterial, antifungal activities and cytotoxic studies against chinese hamster ovary (CHO) cell lines. Heliyon 7(6):e07265. https://doi.org/10.1016/J.HELIYON.2021.E07265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kumar I, Yaseen B, Gangwar C, Mishra SK, Mohan Naik R (2021) Environmental benign synthesis and characterization of nickel oxide nanoparticles using chicken egg white as template and evaluations of their antibacterial/antifungal activities. Mater Today: Proc 46:2272–2276. https://doi.org/10.1016/J.MATPR.2021.03.735

    Article  CAS  Google Scholar 

  27. Lim YH, Tiemann KM, Hunstad DA, Elsabahy M, Wooley KL (2016) Polymeric nanoparticles in development for treatment of pulmonary infectious diseases. In Wiley Interdisciplin Rev: Nanomedicine Nanobiotechn 8(6):842–871. https://doi.org/10.1002/wnan.1401

    Article  CAS  Google Scholar 

  28. Lu M, Xiang S, Huang Y, Li G (2022) Morphological stabilization efficiencies of nanoparticles toward flowing polymer blends: Role of roughness and viscosity ratio. Colloids Surf, A 647:129094. https://doi.org/10.1016/J.COLSURFA.2022.129094

    Article  CAS  Google Scholar 

  29. Ma X, Pawlik M (2007) Intrinsic viscosities and huggins constants of guar gum in alkali metal chloride solutions. Carbohyd Polym 70(1):15–24. https://doi.org/10.1016/J.CARBPOL.2007.02.024

    Article  CAS  Google Scholar 

  30. Manoharadas S, Altaf M, Alrefaei AF, Devasia RM, Badjah Hadj AYM, Abuhasil MSA (2021) Concerted dispersion of staphylococcus aureus biofilm by bacteriophage and “green synthesized” silver nanoparticles. RSC Adv 11(3):1420–1429. https://doi.org/10.1039/d0ra09725j

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Nishida K, Kaji K, Kanaya T, Fanjat N (2002) Determination of intrinsic viscosity of polyelectrolyte solutions. Polymer 43(4):1295–1300. https://doi.org/10.1016/S0032-3861(01)00682-6

    Article  CAS  Google Scholar 

  32. Omerović N, Djisalov M, Živojević K, Mladenović M, Vunduk J, Milenković I, Knežević N, Gadjanski I, Vidić J (2021) Antimicrobial nanoparticles and biodegradable polymer composites for active food packaging applications. Compr Rev Food Sci Food Saf 20(3):2428–2454. https://doi.org/10.1111/1541-4337.12727

    Article  CAS  PubMed  Google Scholar 

  33. Pannerselvam B, Alagumuthu TS, Cinnaiyan SK, Al-Dhabi NA, Ponmurugan K, Saravanan M, Kanth SV, Thangavelu KP (2021) In vitro cytotoxicity and antibacterial activity of optimized silver nanoparticles against wound infectious bacteria and their morphological studies. J Cluster Sci 32(1):63–76. https://doi.org/10.1007/s10876-020-01759-x

    Article  CAS  Google Scholar 

  34. Pillai AM, Sivasankarapillai VS, Rahdar A, Joseph J, Sadeghfar F, Anuf A, R., Rajesh, K., & Kyzas, G. Z. (2020) Green synthesis and characterization of zinc oxide nanoparticles with antibacterial and antifungal activity. J Mol Struct 1211:128107. https://doi.org/10.1016/J.MOLSTRUC.2020.128107

    Article  CAS  Google Scholar 

  35. Prashanth KS, Revathi V (2021) Antimicrobial and antifungal studies of polymer nanocomposites with 2D nanomaterials. Mater Today: Proc 49:593–596. https://doi.org/10.1016/J.MATPR.2021.04.510

    Article  Google Scholar 

  36. Qasim M, Udomluck N, Chang J, Park H, Kim K (2018) Antimicrobial activity of silver nanoparticles encapsulated in poly-N-isopropylacrylamide-based polymeric nanoparticles. Int J Nanomed 13:235–249. https://doi.org/10.2147/IJN.S153485

    Article  CAS  Google Scholar 

  37. Rodríguez-Tobías H, Morales G, Grande D (2019) Comprehensive review on electrospinning techniques as versatile approaches toward antimicrobial biopolymeric composite fibers. Mater Sci Eng, C 101:306–322. https://doi.org/10.1016/J.MSEC.2019.03.099

    Article  Google Scholar 

  38. Rukmanikrishnan B, Ismail FRM, Manoharan RK, Kim SS, Lee J (2020) Blends of gellan gum/xanthan gum/zinc oxide based nanocomposites for packaging application: Rheological and antimicrobial properties. Int J Biol Macromol 148:1182–1189. https://doi.org/10.1016/J.IJBIOMAC.2019.11.155

    Article  CAS  PubMed  Google Scholar 

  39. Saleh N, Elshaer S, Girgis G (2021) Biodegradable polymers-based nanoparticles to enhance the antifungal efficacy of fluconazole against Candida albicans. Curr Pharm Biotechnol. https://doi.org/10.2174/1389201022666210708105142

    Article  Google Scholar 

  40. Sharma S, Virk K, Sharma K, Bose SK, Kumar V, Sharma V, Focarete ML, Kalia S (2020) Preparation of gum acacia-poly(acrylamide-IPN-acrylic acid) based nanocomposite hydrogels via polymerization methods for antimicrobial applications. J Mol Struct 1215:128298. https://doi.org/10.1016/J.MOLSTRUC.2020.128298

    Article  CAS  Google Scholar 

  41. Sharma U, Badyal PN, Gupta S (2015) Polymeric Nanoparticles Drug Delivery to Brain: A Review. Int J Pharmacol Pharm Sci 2(5):60–69

    CAS  Google Scholar 

  42. Sheorain J, Mehra M, Thakur R, Grewal S, Kumari S (2019) In vitro anti-inflammatory and antioxidant potential of thymol loaded bipolymeric (tragacanth gum/chitosan) nanocarrier. Int J Biol Macromol 125:1069–1074. https://doi.org/10.1016/j.ijbiomac.2018.12.095

    Article  CAS  PubMed  Google Scholar 

  43. Shinde RS, More RA, Adole VA, Koli PB, Pawar TB, Jagdale BS, Desale BS, Sarnikar YP (2021) Design, fabrication, antitubercular, antibacterial, antifungal and antioxidant study of silver doped ZnO and CuO nano candidates: A comparative pharmacological study. Curr Res Green Sustain Chem 4:100138. https://doi.org/10.1016/J.CRGSC.2021.100138

    Article  CAS  Google Scholar 

  44. Somaglino L, Mousnier L, Giron A, Urbach W, Tsapis N, Taulier N (2021) In vitro evaluation of polymeric nanoparticles with a fluorine core for drug delivery triggered by focused ultrasound. Colloids Surf, B 200:111561. https://doi.org/10.1016/j.colsurfb.2021.111561

    Article  CAS  Google Scholar 

  45. Song Y, Elsabahy M, Collins CA, Khan S, Li R, Hreha TN, Shen Y, Lin YN, Letteri RA, Su L, Dong M, Zhang F, Hunstad DA, Wooley KL (2021) Morphologic design of silver-bearing sugar-based polymer nanoparticles for uroepithelial cell binding and antimicrobial delivery. Nano Lett 21(12):4990–4998. https://doi.org/10.1021/acs.nanolett.1c00776

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Spirescu VA, Chircov C, Grumezescu AM, Andronescu E (2021) Polymeric nanoparticles for antimicrobial therapies: An up-to-date overview. In Polymers 13(5):1–27. https://doi.org/10.3390/polym13050724

    Article  CAS  Google Scholar 

  47. Stefi AL, Nikou T, Vassilacopoulou D, Skaltsounis L-A, Halabalaki M, Christodoulakis NS (2021) Structure and organization of the secretion apparatus of the mastic tree (Pistacia lentiscus L.) and LC–HRMS analysis of leaf extracts. Planta 253(3):70. https://doi.org/10.1007/s00425-021-03588-2

    Article  CAS  PubMed  Google Scholar 

  48. Svetlichnyi V, Shabalina A, Lapin I, Goncharova D, Nemoykina A (2016) ZnO nanoparticles obtained by pulsed laser ablation and their composite with cotton fabric: Preparation and study of antibacterial activity. Appl Surf Sci 372:20–29. https://doi.org/10.1016/J.APSUSC.2016.03.043

    Article  CAS  Google Scholar 

  49. Tayeb AM, Tony MA, Ismaeel EK (2019) Engineered nanostructured ZnO for water remediation: operational parameters effect, box-behnken design optimization and kinetic determinations. Appl Water Sci 9(3):43. https://doi.org/10.1007/s13201-019-0921-0

    Article  CAS  Google Scholar 

  50. Tsuzuki S, Matsunaga N, Yahara K, Gu Y, Hayakawa K, Hirabayashi A, Kajihara T, Sugai M, Shibayama K, Ohmagari N (2020) National trend of blood-stream infection attributable deaths caused by staphylococcus aureus and Escherichia coli in Japan. J Infect Chemothe 26(4):367–371. https://doi.org/10.1016/j.jiac.2019.10.017

    Article  CAS  Google Scholar 

  51. Wang B, Guo W, Liu X, He Y, Song P, Wang R (2020) Fabrication of silver-decorated popcorn-like polymeric nanoparticles for enhanced antibacterial activity. Appl Surf Sci 522:146318. https://doi.org/10.1016/J.APSUSC.2020.146318

    Article  CAS  Google Scholar 

  52. Xu S, Zhang Y, Zhu Y, Wu J, Li K, Lin G, Li X, Liu R, Liu X, Wong CP (2019) Facile one-step fabrication of glucose oxidase loaded polymeric nanoparticles decorating MWCNTs for constructing glucose biosensing platform: structure matters. Biosens Bioelectron 135:153–159. https://doi.org/10.1016/J.BIOS.2019.04.017

    Article  CAS  PubMed  Google Scholar 

  53. Xu T, Gao CC, Feng X, Huang M, Yang Y, Shen X, Tang X (2019) Cinnamon and clove essential oils to improve physical, thermal and antimicrobial properties of chitosan-gum arabic polyelectrolyte complexed films. Carbohyd Polym 217:116–125. https://doi.org/10.1016/j.carbpol.2019.03.084

    Article  CAS  Google Scholar 

  54. Yadav S, Kapley A (2021) Antibiotic resistance: global health crisis and metagenomics. Biotechnol Rep 29:e00604. https://doi.org/10.1016/J.BTRE.2021.E00604

    Article  CAS  Google Scholar 

  55. Zain NAM, Suhaimi MS, Idris A (2011) Development and modification of PVA–alginate as a suitable immobilization matrix. Process Biochem 46(11):2122–2129. https://doi.org/10.1016/J.PROCBIO.2011.08.010

    Article  CAS  Google Scholar 

  56. Zhang Z, Tsai P-C, Ramezanli T, Michniak-Kohn BB (2013) Polymeric nanoparticles-based topical delivery systems for the treatment of dermatological diseases. Wiley Interdisciplin Rev Nanomed Nanobiotechnol 5(3):205–218. https://doi.org/10.1002/wnan.1211

    Article  CAS  Google Scholar 

  57. Zhao X, Wang K, Ai C, Yan L, Jiang C, Shi J (2021) Improvement of antifungal and antibacterial activities of food packages using silver nanoparticles synthesized by iturin A. Food Packag Shelf Life 28:100669. https://doi.org/10.1016/J.FPSL.2021.100669

    Article  CAS  Google Scholar 

  58. Zimet P, Mombrú ÁW, Faccio R, Brugnini G, Miraballes I, Rufo C, Pardo H (2018) Optimization and characterization of nisin-loaded alginate-chitosan nanoparticles with antimicrobial activity in lean beef. LWT 91:107–116. https://doi.org/10.1016/J.LWT.2018.01.015

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors kindly acknowledge the East Anatolia High Technology Application and Research Center (DAYTAM) at Ataturk University for providing characterization.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Selcan Karakuş.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karakuş, S., Akkurt, B., Tüzün, E. et al. The preparation and biomedical applications of self-assembled two-dimensional sandalose gum supported polyvinyl alcohol/alginate bio-polymeric nanoparticles. Polym. Bull. 80, 5313–5332 (2023). https://doi.org/10.1007/s00289-022-04317-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-022-04317-9

Keywords

Navigation