Skip to main content
Log in

Styrene-assisted acrylic acid grafting onto polypropylene surfaces: preparation, characterization, and an automatically latex-coagulating application

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

This work aimed to modify the polypropylene (PP) surface by grafting with acrylic acid (AA) monomer in toluene solution using styrene (ST) and benzoyl peroxide (BPO) as comonomer and initiator, respectively, for potential application as an automatically latex-coagulating cup. The grafting percentage of PP-g-PAA was slightly increased with increasing time of surface activation, grafting reaction time, and concentrations BPO and AA. Interestingly, the presence of ST comonomer significantly improved the grafting percentage of AA onto PP sheets (PP-g-P(ST-co-AA)) and its ion exchange capacity from 5.76 to 25% and 8.87 × 10–5 to 43.1 × 10–5 meq/g, respectively. This indicated that the incorporation of ST could significantly enhance the grafting reaction of AA onto the PP surfaces. The possible mechanism of grafting reaction was also described and demonstrated. Besides, the PP-g-P(ST-co-AA)25 exhibited high coagulum performance of natural rubber latex (NRL) of 93.8% and high NRL coagulation rate of 63.5% %/h. Thus, the grafted PP with ST/AA monomers as an automatically latex-coagulating cup/container could offer not only the lower production cost and lesser environmental problems but also improved properties, qualities, and price of cup lump products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Scheme 1
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Suchat S, Theanjumpol P, Karrila S (2015) Rapid moisture determination for cup lump natural rubber by near infrared spectroscopy. Ind Crops Prod 76:772–780

    Article  CAS  Google Scholar 

  2. Narongwongwattana S, Rittiron R (2015) The rapid determination of volatile fatty acid number in para rubber latex using fourier transform-near infrared spectroscopy based on quantification and discrimination model. J Innov Opt Heal Sci 8(5):1550042

    Article  CAS  Google Scholar 

  3. Pamornnak B, Pipitsunthornsan P, Somwong S et al (2020) A microwave reflectometer technique for classifying a rubber cup lump. Comput Electron Agric 168:105152

    Article  Google Scholar 

  4. Santipanusopon S, Riyajan S (2009) Effect of field natural rubber latex with different ammonia contents and storage period on physical properties of latex concentrate, stability of skim latex and dipped film. Phys Procedia 2:127–134

    Article  CAS  Google Scholar 

  5. Bei-long Z, Hong-hai H, Yong-zhou W et al (2016) Effect of maturation time of coagulum of fresh natural rubber latex on oxidation kinetics of natural rubber. Adv Comput Sci Res 71:1244–1250

    Google Scholar 

  6. Nepacina MRJ, Foronda JRF, Haygood KJF et al (2019) Differentiation of rubber cup coagulum through machine learning. Sci Agric Bohem 50(1):51–55

    Google Scholar 

  7. Nguyen NH, Luong TT (2012) Situation of wastewater treatment of natural rubber latex processing in the Southeastern region Vietnam. J Viet Env 2(2):58–64

    Article  Google Scholar 

  8. Liang F, Yuan H, Shao Q et al (2018) Study of suspension grafting process of polypropylene. Des Monomers Polym 21(1):130–136

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Dogué LJ, Mermilliod N, Gandini A (1995) Modification of industrial polypropylene film by grafting of poly(acrylicacid). J Appl Polym Sci 56:33–40

    Article  Google Scholar 

  10. Smitha B, Sridhar S, Khan AA (2004) Polyelectrolyte complexes of chitosan and poly(acrylic acid) as proton exchange membranes for fuel cells. Macromolecules 37:2233–2239

    Article  CAS  Google Scholar 

  11. Butruk-Raszeja BA, Trzaskowska PA, Kuźminska A et al (2016) Polyurethane modification with acrylic acid by Ce(IV)-initiated graft polymerization. Open Chem 14:206–214

    Article  CAS  Google Scholar 

  12. Abdolahifard M, Bahrami SH, Malek RMA (2011) Surface modification of PET fabric by graft copolymerization with acrylic acid and its antibacterial properties. ISRN Org Chem. https://doi.org/10.5402/2011/265415

    Article  PubMed Central  PubMed  Google Scholar 

  13. Mandal DK, Bhunia H, Bajpai PK et al (2017) Optimization of acrylic acid grafting onto polypropylene using response surface methodology and its biodegradability. Radiat Phys Chem 132:71–81

    Article  CAS  Google Scholar 

  14. Saxena S, Ray AR, Gupta B (2010) Chitosan immobilization on polyacrylic acid grafted polypropylene monofilament. Carbohydr Polym 82:1315–1322

    Article  CAS  Google Scholar 

  15. Yu Z, Lua L, Lua L et al (2020) Multilayers assembly of bio-polyelectrolytes onto surface modified polypropylene films: Characterization, chelating and antioxidant activity. Carbohydr Polym 245:116456

    Article  CAS  PubMed  Google Scholar 

  16. Fasce LA, Costamagna V, Pettarin V et al (2008) Poly(acrylic acid) surface grafted polypropylene films: Near surface and bulk mechanical response. EXPRESS Polym Lett 2(11):779–790

    Article  CAS  Google Scholar 

  17. Du J, Wang Y, Xie X et al (2017) Styrene-assisted maleic anhydride grafted poly(lactic acid) as an effective compatibilizer for wood flour/poly(lactic acid) bio-composites. Polym 9(11):623

    Article  Google Scholar 

  18. Phadnis S, Patri M, Hande VR et al (2003) Proton exchange membranes by grafting of styrene–acrylic acid onto FEP by preirradiation technique. I. Effect of synthesis conditions. J Appl Polym Sci 90:2572–2577

    Article  CAS  Google Scholar 

  19. Benavides R, Urbano R, Morales-Acosta D et al (2019) Effect of gamma radiation on crosslinking, water uptake and ion exchange on polystyrene-co-acrylic acid copolymers useful for fuel cells. Int J Hydrogen Energ 44(24):12525–12528

    Article  CAS  Google Scholar 

  20. Melo L, Benavides R, Martínez G et al (2017) Sulfonated polystyrene-co-acrylic acid membranes modified by transmembrane reduction of platinum. Int J Hydrogen Energ 42(51):30407–30416

    Article  CAS  Google Scholar 

  21. Wang W, Wang L, Chen X et al (2006) Study on the graft reaction of poly(propylene) fiber with acrylic acid. Macromol Mater Eng 291:173–180

    Article  CAS  Google Scholar 

  22. El-Arnaouty MB, Abdel Ghaffar AM, Eid M (2013) Properties of grafted polymer metal complexes as ion exchangers and its electrical conductivity. Polym Eng Sci 53(4):792–799

    Article  CAS  Google Scholar 

  23. Jiang S, Ladewig BP (2017) High ion-exchange capacity semihomogeneous cation exchange membranes prepared via a novel polymerization and sulfonation approach in porous polypropylene. ACS Appl Mater Interfaces 9:38612–38620

    Article  CAS  PubMed  Google Scholar 

  24. Luo Z, Chen H, Xu J et al (2018) Surface grafting of styrene on polypropylene fibers by argon plasma and its adsorption-regeneration of BTX. J Appl Polym Sci 135(17):46171

    Article  Google Scholar 

  25. Belmares M, Blanco M, Goddard WA III et al (2004) Hildebrand and Hansen solubility parameters from molecular dynamics with applications to electronic nose polymer sensors. J Comput Chem 25(15):1814–1826

    Article  CAS  PubMed  Google Scholar 

  26. Hadi AJ, Najmuldeen GF, Yusoh KB (2013) Dissolution/reprecipitation technique for waste polyolefin recycling using new pure and blend organic solvents. J Polym Eng 33(5):471–481

    Article  CAS  Google Scholar 

  27. Chernikova EV, Zaitsev SD, Plutalova AV et al (2018) Control over the reactive reactivities of monomers in RAFT copolymerization of styrene and acrylic acid. RSC Adv 20(8):14300–14310

    Article  Google Scholar 

  28. Wongthong P, Nakason C, Pan Q et al (2014) Styrene-assisted grafting of maleic anhydride onto deproteinized natural rubber. Eur Polym J 59:144

    Article  CAS  Google Scholar 

  29. Wang D, Wang J, He S et al (2021) Efficient approach to produce functional polypropylene via solvent assisted solid-phase free radical grafting of multi-monomers. Appl Petrochem Res 11:99–111

    Article  CAS  Google Scholar 

  30. El-Sayed Hegazy D (2012) Selectivity of acrylic acid radiation grafted non-woven polypropylene sheets towards some heavy metals ions. Open J Polym Chem 2:6–13

    Article  CAS  Google Scholar 

  31. Abudonia KS, Saad GR, Naguib HF, Eweis M, Zahran D, Elsabee MZ (2018) Surface modification of polypropylene film by grafting with vinyl monomers for the attachment of chitosan. J Polym Res. https://doi.org/10.1007/s10965-018-1517-3

    Article  Google Scholar 

  32. Hassan MIU, Taimur S, Khan IA et al (2018) Surface modification of polypropylene waste by the radiation grafting of styrene and upcycling into a cation-exchange resin. J Appl Polym Sci 47145:1–8

    Google Scholar 

  33. Mandal DK, Bhunia H, Bajpai PK et al (2016) Radiation-induced grafting of acrylic acid onto polypropylene film and its biodegradability. Radiat Phys Chem 123:37–45

    Article  CAS  Google Scholar 

  34. Julthongpiput D, LeMieux M, Tsukruk VV (2003) Micromechanical properties of glassy and rubbery polymer brush layers as probed by atomic force microscopy. Polym 44:4557–4562

    Article  CAS  Google Scholar 

  35. El-Toony MM, Abdel-Hady EE, El-Kelesh NA (2016) Application of poly (tetraflouroethylene) grafted with styrene/acrylic acid for proton exchange fuel cell. Egypt J Chem 59(5):799–818

    Article  Google Scholar 

  36. Flores-Gallardo SG, Sanchez-Valdes S, Ramos De Valle LF (2001) Polypropylene/polypropylene-grafted acrylic acid blends for multilayer films: Preparation and characterization. J Appl Polym Sci 79:1497–1505

    Article  CAS  Google Scholar 

  37. Dong Q, Liu Y (2004) Free-radical grafting of acrylic acid onto isotactic polypropylene using styrene as a comonomer in supercritical carbon dioxide. J Appl Polym Sci 92(4):2203–2210

    Article  CAS  Google Scholar 

  38. Li X, Silge S, Saal A et al (2021) Adaptation of a styrene−acrylic acid copolymer surface to water. Langmuir 37(4):1571–1577

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Lutful Kabir MD, Kim HJ, Choi S (2017) Comparison of several acidified chitosan/Nafion® composite membranes for fuel cell applications. J Nanosci Nanotechno 17:8128–8131

    Article  Google Scholar 

  40. Berthelot K, Lecomte S, Estevez Y et al (1838) (2014) Rubber particle proteins, HbREF and HbSRPP, show different interactions with model membranes. Biochim Biophys Acta Biomembr 1:287–299

    Google Scholar 

  41. Badiei YM, Traba C, Rosales R et al (2021) Plasma-initiated graft polymerization of acrylic acid onto fluorine-doped tin oxide as a platform for immobilization of water-oxidation catalysts. ACS Appl Mater Interfaces 13:14077–14090

    Article  CAS  PubMed  Google Scholar 

  42. Ang MBMY, Huang S, Chang M et al (2020) Ultraviolet-initiated graft polymerization of acrylic acid onto thin-film polyamide surface for improved ethanol dehydration performance of pervaporation membranes. Sep Purif Technol 235:116155

    Article  Google Scholar 

  43. Chen F, Xie L (2020) Enhanced fouling-resistance performance of polypropylene hollow fiber membrane fabricated by ultrasonic-assisted graft polymerization of acrylic acid. Appl Surf Sci 502:144098

    Article  CAS  Google Scholar 

  44. Matsuzaki Y, Itabashi T, Kawai-Noma S et al (2019) Improvement of protein binding capacity of acrylic-acid-grafted fibers by polymer root-to-brush shift. Radiat Phys Chem 158:131–136

    Article  CAS  Google Scholar 

  45. Xu L, Hu J, Ma H et al (2018) Electron-beam-induced post-grafting polymerization of acrylic acid onto the surface of Kevlar fibers. Radiat Phys Chem 145:74–79

    Article  Google Scholar 

  46. Gupta B, Krishnanand K, Deopura BL (2012) Oxygen plasma-induced grafted polymerization of acrylic acid on polycaprolactone monofilament. Eur Polym J 48:1940–1948

    Article  CAS  Google Scholar 

  47. Korolkov IV, Mashentseva AA, Güven O, Taltenov AA (2015) UV-induced graft polymerization of acrylic acid in the sub-micronchannels of oxidized PET track-etched membrane. Nucl Instrum Methods Phys Res Sec B: Beam Inter Mater Atoms 365:419–423. https://doi.org/10.1016/j.nimb.2015.07.057

    Article  CAS  Google Scholar 

  48. Zhao X, Xiong D, Wang K et al (2017) Improved biotribological properties of PEEK by photo-induced graft polymerization of acrylic acid. Mater Sci Eng C 75:777–783

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financial supported by Faculty of Science, Ubon Ratchathani University. The center of excellent for innovation in chemistry (PERCH-CIC), Ministry of Higher Education, Science, Research, and Innovation are also acknowledged for some partial supports.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sayant Saengsuwan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vudjung, C., Nuinu, P., Yupas, P. et al. Styrene-assisted acrylic acid grafting onto polypropylene surfaces: preparation, characterization, and an automatically latex-coagulating application. Polym. Bull. 80, 5123–5147 (2023). https://doi.org/10.1007/s00289-022-04303-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-022-04303-1

Keywords

Navigation