Skip to main content
Log in

Synthesis of N-vinylcaprolactam and methacrylic acid based hydrogels and investigation of drug release characteristics

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

In this study, N-vinylcaprolactam (VCL) and methacrylic acid (MAA) based copolymeric hydrogels with different VCL/MAA molar ratios were produced to develop a temperature-sensitive biomaterial for use in drug delivery systems. For this purpose, poly(N-vinylcaprolactam-co-methacrylic acid) hydrogels, symbolized p(VCL-co-MAA) were synthesized by free radical polymerization in an ethanol medium using different monomer ratios at 70 °C with 2,2′-azobis(2-methylpropionamidine) dihydrochloride (AMPA) as an initiator, and in the presence of crosslinking agent (N,N′-methylenebisacrylamide). The structures of hydrogels were confirmed by Fourier Transform Infrared Spectroscopy (FTIR). The addition of MAA, which has an ionizable group as a comonomer to the structure, it also provided pH sensitivity to VCL based hydrogels as well as its temperature sensitivity. In order to examine the drug release properties, first, the swelling-shrinking behaviors of these hydrogels were determined in the temperature range of 25–60 °C and different pH values (2.1, 5.5, and 7.2) in equilibrium time (24 h). Then, the drug release profiles of these hydrogels were assessed in “in vitro” conditions at 37 °C and different pH values using mimic biological fluids for Rhodamine B (Rh B), a cationic model drug. The maximum drug release values were founded in the range of 34–57%, 73–90%, 69–76% at pH 2.1, 5.5, and 7.2, respectively, for the hydrogels with different VCL/MAA molar ratios. At the end of the swelling and drug release experiments, it was seen that the swelling degree of synthesized hydrogel exhibited to both dependent temperature and pH. Furthermore, it was observed that the amount% of the drug and the rate of drug release also changed depending on the change in pH values. In addition, surface morphologies of hydrogels were examined by Scanning Electron Microscopy (SEM) before and after drug release. Then, the kinetic mechanism of the drug release behavior of hydrogels was investigated using zero-order, first-order, Higuchi, and Korsmeyer–Peppas models for all three pH values. The kinetic release profile of the p(VCL-co-MAA) hydrogel was determined to fit into the Higuchi model, generally. Although, the correlation coefficients showed that the hydrogel fitted to the Higuchi model at all pH conditions, analysis with the Korsmeyer-Peppas equation had been assisted more precisely in the understanding of one or more than one mechanisms controlling the release, at different pH values. According to the kinetic release modeling results, it may be concluded that swelling and diffusion processes were probably simultaneously effective on the drug release mechanism. All these results imply that prepared dual-responsive p(VCL-co-MAA) hydrogels may be used for potential applications such as long-term controlled drug release systems like 24 h in the gastrointestinal system with varying pH values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Scheme 1

Similar content being viewed by others

References

  1. Özkahraman B, Acar I, Gök MK, Güçlü G (2016) N-vinylcaprolactam-based microgels: synthesis, characterization and drug release applications. Res Chem Intermed 42:6013–6024. https://doi.org/10.1007/s11164-016-2422-1

    Article  CAS  Google Scholar 

  2. Thakur S, Thakur VK, Arotiba OA (2018) History, Classification, Properties and Application of Hydrogels. An Overview. In: Thakur V, Thakur M (eds) Hydrogels. Gels Horizons: From Science to Smart Materials. Springer, Singapore. https://doi.org/10.1007/978-981-10-6077-9-2

    Chapter  Google Scholar 

  3. Cortez-Lemus NA, Licea-Claveria A (2016) Poly(N-vinylcaprolactam), A comprehensive review on a thermoresponsive polymer becoming popular. Prog Polym Sci 53:1–51. https://doi.org/10.1016/j.progpolymsci.2015.08.001

    Article  CAS  Google Scholar 

  4. Wells CM, Harris M, Choi L, Murali VP, Guerra FD, Jennings JA (2019) Stimuli-responsive drug release from smart polymers. J Funct Biomater 10(3):34. https://doi.org/10.3390/jfb10030034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Pişkin E (2004) Molecularly designed water soluble, intelligent, nanosize polymeric carriers. Int J Pharm 277(1–2):105–118. https://doi.org/10.1016/j.ijpharm.2003.06.003

    Article  CAS  PubMed  Google Scholar 

  6. Özkahraman B, Acar I, Emik S (2011) Removal of cationic dyes from aqueous solutions with poly(N-isopropylacrylamide-co-itaconic acid) hydrogels. Polym Bull 66:551–570. https://doi.org/10.1007/s00289-010-0371-1

    Article  CAS  Google Scholar 

  7. Özkahraman B, Acar I, Güçlü G (2016) Synthesis and characterization of poly(VCL-HEA-IA) terpolymer for drug release applications. J. Polym. Mater. 33:351–363 https://www.printspublications.com/journal/journalofpolymermaterialsaninternationaljournal13712463644

    Google Scholar 

  8. Özkahraman B, Yıldırım E, Emik S, Acar I (2021) The removal of Cu(II) and Pb(II) ions from aqueous solutions by temperature-sensitive hydrogels based on N-isopropylacrylamide and itaconic acid. Main Group Chem 20(3):389–407. https://doi.org/10.3233/MGC-210056

    Article  CAS  Google Scholar 

  9. Kozlovskaya V, Kharlampieva E (2019) Self-assemblies of thermoresponsive poly(N-vinylcaprolactam) polymers for applications in biomedical field. ACS Appl Polym Mater 2(1):26–39. https://doi.org/10.1021/acsapm.9b00863

    Article  CAS  Google Scholar 

  10. Durkut S, Elçin YM (2020) Synthesis and characterization of thermosensitive poly(N-vinyl caprolactam)-grafted-aminated alginate hydrogels. Macromol Chem Phys 221(2):1900412. https://doi.org/10.1002/macp.201900412

    Article  CAS  Google Scholar 

  11. Anirudhan TS, Christa J (2020) Temperature and pH sensitive multi-functional magnetic nanocomposite for the controlled delivery of 5-fluorouracil, an anticancer drug. J Drug Deliv Sci Technol 55:101476. https://doi.org/10.1016/j.jddst.2019.101476

    Article  CAS  Google Scholar 

  12. Banihashem S, Nezhati MN, Panahia HA (2020) Synthesis of chitosan-grafted-poly(N-vinylcaprolactam) coated on the thiolated gold nanoparticles surface for controlled release of cisplatin. Carbohydr Polym 227:115333. https://doi.org/10.1016/j.carbpol.2019.115333

    Article  CAS  PubMed  Google Scholar 

  13. Özkahraman B, Emeriewen K, Saleh GM, Thanh NTK (2020) Engineering hydrogel nanoparticles to enhance transdermal local anaesthetic delivery in human eyelid skin. RSC Adv 10(7):3926–3930. https://doi.org/10.1039/C9RA06712D

    Article  PubMed  PubMed Central  Google Scholar 

  14. Wu JZ, Yang Y, Li S, Shi A, Song B, Niu S, Chen W, Yao Z (2019) Glucose-sensitive nanoparticles based on poly(3-acrylamidophenylboronic acid-block-N-vinylcaprolactam) for insulin delivery. Int J Nanomedicine 14:8059–8072. https://doi.org/10.2147/IJN.S220936

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hogan KJ, Mikos AG (2020) Biodegradable thermoresponsive polymers: Applications in drug delivery and tissue engineering. Polymer 211:123063. https://doi.org/10.1016/j.polymer.2020.123063

    Article  CAS  Google Scholar 

  16. Imaz A., Forcada J. (2010). N‐vinylcaprolactam‐based microgels for biomedical applications. J. Polym. Sci. Part A: Polym. Chem. 48(5), 1173–1181. https://doi.org/10.1002/pola.23876

    Article  CAS  Google Scholar 

  17. Vihola H, Laukkanen A, Valtola L, Tenhu H, Hirvonen J (2005) Cytotoxicity of thermosensitive polymers poly(N-isopropylacrylamide), poly(N-vinylcaprolactam) and amphiphilically modified poly(N-vinylcaprolactam). Biomater 26(16):3055–3064. https://doi.org/10.1016/j.biomaterials.2004.09.008

    Article  CAS  Google Scholar 

  18. Fernandez-Quiroz D, Loya-Duarte J, Silva-Campa E, Argüelles-Monal W, Sarabia-Sainz A, Lucero-Acuna A, Castillo-Castro T, Roman JS, Lizardi-Mendoza J, Burgara-Estralla AJ, Casteneda B, Soto-Puebla D, Pedroza-Montero M (2019) Temperature stimuli-responsive nanoparticle from chitosan-grafted-poly(N-vinylcaprolactam) as a drug delivery system. J Appl Polym Sci 136(32):47831. https://doi.org/10.1002/app.47831

    Article  CAS  Google Scholar 

  19. Cerda-Sumbarda YD, Dominguez-Gonzalez C, Zizumbo-Lopez A, Licea-Claverie A (2020) Thermoresponsive nanocomposite hydrogels with improved properties based on poly(N-vinylcaprolactam). Mater Today Commun 24:101041. https://doi.org/10.1016/j.mtcomm.2020.101041

    Article  CAS  Google Scholar 

  20. Durkut S (2019) Thermoresponvive poly(N-vinylcaprolactam)-g-galactosylated chitosan hydrogels: synthesis, characterization, and controlled release properties. Int J Polym Mater Polym Biomater 68:1034–1047. https://doi.org/10.1080/00914037.2018.1525546

    Article  CAS  Google Scholar 

  21. Kumar A, Deepak SS, Afgan S, Kumar R, Keshari AK, Srivasta R (2018) Development of graft copolymer of carboxymethylcellulose and N-vinylcaprolactam towards strong antioxidant and antibacterial polymeric materials. Int J Biol Macromol 112:780–787. https://doi.org/10.1016/j.ijbiomac.2018.02.030

    Article  CAS  PubMed  Google Scholar 

  22. Fallon M, Halliga S, Pezzoli R, Geever L, Higginbotham C (2019) Synthesis and characterisation of novel temperature and pH sensitive physically cross-linked poly(N-vinylcaprolactam-co-itaconic acid) hydrogels for drug delivery. Gels 5(3):41–54. https://doi.org/10.3390/gels5030041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Mundargi RC, Rangaswamy V, Aminabhavi TM (2011) Poly(N-vinylcaprolactam-co-methacrylic acid) hydrogels microparticles for oral insulin delivery. J Microencapsul 28:384–394. https://doi.org/10.3109/02652048.2011.576782

    Article  CAS  PubMed  Google Scholar 

  24. Xu J, Xu B, Shou D, Xia X, Hu Y (2015) Preparation and evaluation of vancomycin-loaded N-trimethyl chitosan nanoparticles. Polymers 7(9):1850–1870. https://doi.org/10.3390/polym7091488

    Article  CAS  Google Scholar 

  25. Özbaş Z, Özkahraman B, Öztürk BA (2018) A controlled release profile of 5-fluorouracil loaded P(AAM-co-NVP-co-DEAEMA) microgel prepared via free precipitation polymerization. Polym Bull 75(7):3053–3067. https://doi.org/10.1007/s00289-017-2202-0

    Article  CAS  Google Scholar 

  26. Karimini S, Shamsipur A, Shamsipur M (2016) Analytical characteristics and application of novel chitosan coated magnetic nanoparticles as an efficient drug delivery system for ciprofloxacin. Enhanced drug release kinetics by low-frequency ultrasounds. J Pharm Biomed Anal 129:450–457. https://doi.org/10.1016/j.jpba.2016.07.016

    Article  CAS  Google Scholar 

  27. Huanbutta K, Sangnim T (2019) Design and development of zero-order drug release gastroretentive floating tablets fabricated by 3D printing technology. J Drug Deliver Sci Tech 52:831–837. https://doi.org/10.1016/j.jddst.2019.06.004

    Article  CAS  Google Scholar 

  28. Pooresmaeil M, Namazi H (2020) Facile preparation of pH-sensitive chitosan microspheres for delivery of curcumin; characterization, drug release kinetics and evaluation of anticancer activity. Int J Biol Macromol 162:501–511. https://doi.org/10.1016/j.ijbiomac.2020.06.183

    Article  CAS  PubMed  Google Scholar 

  29. Costa P, Sousa Lobo JM (2003) Evaluation of mathematical models describing drug release from estradiol transdermal systems. Drug Dev Ind Pharm 29(1):89–97. https://doi.org/10.1081/DDC-120016687

    Article  CAS  PubMed  Google Scholar 

  30. Reddy NS, Sowmya S, Bumgardner JD, Chennazhi KP, Biswas R, Jayakumar R (2014) Tetracycline nanoparticles loaded calcium sulfate composite beads for periodontal management. Biochim Biophys Acta Gen Subj 1840(6):2080–2090. https://doi.org/10.1016/j.bbagen.2014.02.007

    Article  CAS  Google Scholar 

  31. Hayashi T, Kanbe H, Okada M, Suzuki M, Ikeda Y, Onuki Y, Kaneko T, Sonobe T (2005) Formulation study and drug release mechanism of a new theophylline sustained-release preparation. Int J Pharm 304(1–2):91–101. https://doi.org/10.1016/j.ijpharm.2005.07.022

    Article  CAS  PubMed  Google Scholar 

  32. Vigata M, Meinert C, Hutmacher DW, Bock N (2020) Hydrogels as drug delivery systems: A review of current characterization and evaluation techniques. Pharmaceutics 12(12):1188. https://doi.org/10.3390/pharmaceutics12121188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Bruschi M.L. (Ed.) (2015). Mathematical models of drug release (Chapter 5), in Strategies to Modify the Drug Release from Pharmaceutical Systems, Woodhead Publishing, Pages 63–86, ISBN 9780081000922, https://doi.org/10.1016/B978-0-08-100092-2.00005-9

  34. Efentakis M, Naseef H, Vlachou M (2010) Two-and three-layer tablet drug delivery systems for oral sustained release of soluble and poorly soluble drugs. Drug Dev Ind Pharm 36(8):903–916. https://doi.org/10.3109/03639040903585119

    Article  CAS  PubMed  Google Scholar 

  35. Malekjani N, Jafari SM (2021) Modeling the release of food bioactive ingredients from carriers/nanocarriers by the empirical, semiempirical, and mechanistic models. Compr Rev Food Sci Food Saf 20(1):3–47. https://doi.org/10.1111/1541-4337.12660

    Article  CAS  PubMed  Google Scholar 

  36. Dash S., Murthy P.N., Nath L., Chowdhury P. (2010). Kinetic modeling on drug release from controlled drug delivery systems. Acta Pol. Pharm. 67(3), 217–223. https://www.ptfarm.pl/pub/File/Acta_Poloniae/2010/3/217.pdf

    CAS  PubMed  Google Scholar 

  37. Freitas MN, Marchetti JM (2005) Nimesulide PLA microspheres as a potential sustained release system for the treatment of inflammatory diseases. Int J Pharm 295(1–2):201–211. https://doi.org/10.1016/j.ijpharm.2005.03.003

    Article  CAS  PubMed  Google Scholar 

  38. Rizwan IM, Damodharan N (2020) Mathematical modelling of dissolution kinetics in dosage forms. Research J Pharm and Tech 13(3):1339–1345. https://doi.org/10.5958/0974-360X.2020.00247.4

    Article  Google Scholar 

  39. Bruschi ML (2015) Mathematical models of drug release. Strategies to modify the drug release from pharmaceutical systems. Woodhead Publishing, Cambridge, UK, pp 63–86

    Google Scholar 

  40. Bravo S.A., Lamas M.C., Salomón C.J. (2002). In-vitro studies of diclofenac sodium controlled-release from biopolymeric hydrophilic matrices. J. Pharm. Pharm. Sci. 5(3), 213–219. https://sites.ualberta.ca/~csps/JPPS5(3)/S.Bravo/diclofenac.pdf

    CAS  PubMed  Google Scholar 

  41. Costa P, Lobo JMS (2001) Modeling and comparison of dissolution profiles. Eur J Pharm Sci 13(2):123–133. https://doi.org/10.1016/S0928-0987(01)00095-1

    Article  CAS  PubMed  Google Scholar 

  42. Higuchi T (1961) Rate of release of medicaments from ointments bases containing drugs in suspension. J Pharm Sci 50(10):874–875. https://doi.org/10.1002/jps.2600501018

    Article  CAS  PubMed  Google Scholar 

  43. Higuchi WI (1962) Analysis of data on the medicament release from ointments. J Pharm Sci 51(8):802–804. https://doi.org/10.1002/jps.2600510825

    Article  CAS  PubMed  Google Scholar 

  44. Higuchi T. (1963). Mechanism of sustained‐action medication. Theoretical analysis of rate of release of solid drugs dispersed in solid matrices. J. Pharm. Sci. 52(12), 1145–1149. https://doi.org/10.1002/jps.2600521210

  45. Bal A., Özkahraman B., Özbaş Z. (2016). Preparation and characterization of pH responsive poly(methacrylic acid‐acrylamide‐N‐hydroxyethyl acrylamide) hydrogels for drug delivery systems. J. App. Polym. Sci.133(13). https://doi.org/10.1002/app.43226

  46. Shoaib M.H., Tazeen J., Merchant H.A., Yousuf R. I. (2006). Evaluation of drug release kinetics from ibuprofen matrix tablets using HPMC. Pak. J. Pharm. Sci. 19(2), 119–124. http://eprints.hud.ac.uk/id/eprint/19640/1/MerchantEvalShoaib_et_al_Pak_J_Pharm_Sci_2006.pdf

  47. Korsmeyer RW, Gurny R, Doelker E, Buri P, Peppas NA (1983) Mechanisms of solute release from porous hydrophilic polymers. Int J Pharm 15(1):25–35. https://doi.org/10.1016/0378-5173(83)90064-9

    Article  CAS  Google Scholar 

  48. Ritger P.L., Peppas N.A. (1987). A simple equation for description of solute release II. Fickian and anomalous release from swellable devices. J. Control. Release. 5(1), 37–42. https://doi.org/10.1016/0168-3659(87)90035-6

  49. Samie M, Bashir S, Abbas J, Khan S, Aman N, Jan H, Muhammad N (2018) Design, formulation and in vitro evaluation of sustained-release tablet formulations of levosulpiride. Turkish J Pharm Sci 15(3):309. https://doi.org/10.4274/tjps.29200

    Article  CAS  Google Scholar 

  50. Mikac U, Sepe A, Gradišek A, Kristl J, Apih T (2019) Dynamics of water and xanthan chains in hydrogels studied by NMR relaxometry and their influence on drug release. Int J Pharm 563:373–383. https://doi.org/10.1016/j.ijpharm.2019.04.014

    Article  CAS  PubMed  Google Scholar 

  51. Lao LL, Peppas NA, Boey FYC, Venkatraman SS (2011) Modeling of drug release from bulk-degrading polymers. Int J Pharm 418(1):28–41. https://doi.org/10.1016/j.ijpharm.2010.12.020

    Article  CAS  PubMed  Google Scholar 

  52. Boateng JS, Matthews KH, Auffret AD, Humphrey MJ, Stevens HN, Eccleston GM (2009) In vitro drug release studies of polymeric freeze-dried wafers and solvent-cast films using paracetamol as a model soluble drug. Int J Pharm 378(1–2):66–72. https://doi.org/10.1016/j.ijpharm.2009.05.038

    Article  CAS  PubMed  Google Scholar 

  53. Silverstein RM, Bassler GC (1966) Spectrometric Identification of Organic Compounds, 4th edn. Publisher John Wiley, New York, USA

    Google Scholar 

  54. Boyko V, Pich A, Lu Y, Richter S, Arndt KF, Adler HJP (2003) Thermo-sensitive poly(N-vinylcaprolactam-co-acetoacetoxyethyl methacrylate) microgels: 1-synthesis and characterization. Polymer 44(26):7821–7827. https://doi.org/10.1016/j.polymer.2003.09.037

    Article  CAS  Google Scholar 

  55. Erdik E., (1993). Organik Kimyada Spektroskopik Yöntemler (Turkish), Publisher: Gazi Yayınevi, Ankara, Turkey, ISBN:9757373041

  56. Simons WW (1978) The Sadtler Handbook of Infrared Spectra, Publisher Sadtler Research Laboratories. ISBN- 10:0845600346

    Google Scholar 

  57. Kalagasidis KM, Ilić M, Filipović J (2009) Swelling behaviour and paracetamol release from poly(N-isopropylacrylamide-itaconic acid) hydrogels. Polym Bull 63(2):197–211. https://doi.org/10.1007/s00289-009-0086-3

    Article  CAS  Google Scholar 

  58. Huglin MB, Liu Y, Velada J (1997) Thermoreversible swelling behaviour of hydrogels based on N-isopropylacrylamide with acidic comonomers. Polymer 38(23):5785–5791. https://doi.org/10.1016/S0032-3861(97)00135-3

    Article  CAS  Google Scholar 

  59. Kalagasidis KM, Filipović J (2006) Copolymer hydrogels based on N-isopropylacrylamide and itaconic acid. Polymer 47(1):148–155. https://doi.org/10.1016/j.polymer.2005.11.002

    Article  CAS  Google Scholar 

  60. Spasojević J, Radosavljević A, Krstić J, Jovanović D, Spasojević V, Kalagasidis-Krušić M, Kačarević-Popović Z (2015) Dual responsive antibacterial Ag-poly(N-isopropylacrylamide/itaconic acid) hydrogel nanocomposites synthesized by gamma irradiation. Eur Polym J 69:168–185. https://doi.org/10.1016/j.eurpolymj.2015.06.008

    Article  CAS  Google Scholar 

  61. Taşdelen B, Kayaman-Apohan N, Güven O, Baysal BM (2004) Investigation of drug release from thermo-and pH-sensitive poly(N-isopropylacrylamide/itaconic acid) copolymeric hydrogels. Polym Adv Tech 15(9):528–532. https://doi.org/10.1002/pat.505

    Article  CAS  Google Scholar 

  62. Ramírez-Fuentes YS, Bucio E, Burillo G (2008) Thermo and pH sensitive copolymer based on acrylic acid and N-isopropylacrylamide grafted onto polypropylene. Polym Bull 60(1):79–87. https://doi.org/10.1007/s00289-007-0827-0

    Article  CAS  Google Scholar 

  63. Cortés JA, Mendizábal E, Katime I (2008) Effect of comonomer type and concentration on the equilibrium swelling and volume phase transition temperature of N-isopropylacrylamide-based hydrogels. J Appl Polym Sci 108(3):1792–1796. https://doi.org/10.1002/app.27632

    Article  CAS  Google Scholar 

  64. Constantin M., Cristea M., Ascenzi P., Fundueanu G (2011) Lower critical solution temperature versus volume phase transition temperature in thermoresponsive drug delivery systems. Express Polym Lett 5(10):839–848. https://doi.org/10.3144/expresspolymlett.2011.83

    Article  CAS  Google Scholar 

  65. Hörter D, Dressman JB (2001) Influence of physicochemical properties on dissolution of drugs in the gastrointestinal tract. Adv Drug Deliv Rev 46(1–3):75–87. https://doi.org/10.1016/S0169-409X(00)00130-7

    Article  PubMed  Google Scholar 

  66. Çavuş S., Çakal E. (2012) Synthesis and characterization of novel poly(N-vinylcaprolactam-co-itaconic acid) gels and analysis of pH and temperature sensitivity. Ind Eng Chem Res 51(3):1218–1226. https://doi.org/10.1021/ie2008746

    Article  CAS  Google Scholar 

  67. Shtanko NI, Lequieu W, Goethals EJ, Du Prez FE (2003) pH-and thermo-responsive properties of poly (N-vinylcaprolactam-co-acrylic acid) copolymers. Polym Int 52(10):1605–1610. https://doi.org/10.1002/pi.1347

    Article  CAS  Google Scholar 

  68. Lou S., Gao S., Wang W., Zhang M., Zhang Q., Wang C., Li C., Kong, D. (2014) Temperature/pH dual responsive microgels of crosslinked poly (N‐vinylcaprolactam‐co‐undecenoic acid) as biocompatible materials for controlled release of doxorubicin. J. Appl. Polym. Sci. 131(23). https://doi.org/10.1002/app.41146

  69. Popescu I., Prisacaru A.I., Suflet D.M., Fundueanu, G (2014) Thermo-and pH-sensitivity of poly (N-vinylcaprolactam-co-maleic acid) in aqueous solution. Polym Bull 71(11):2863–2880. https://doi.org/10.1007/s00289-014-1227-x

    Article  CAS  Google Scholar 

  70. Crespy D, Rossi RM (2007) Temperature-responsive polymers with LCST in the physiological range and their applications in textiles. Polym Int 56(12):1461–1468. https://doi.org/10.1002/pi.2277

    Article  CAS  Google Scholar 

  71. Özturk V, Okay O (2002) Temperature sensitive poly(N-t-butylacrylamide-co-acrylamide) hydrogels: synthesis and swelling behavior. Polymer 43(18):5017–5026. https://doi.org/10.1016/S0032-3861(02)00357-9

    Article  Google Scholar 

  72. Shibayama M., Tanaka T. (1993) Volume phase transition and related phenomena of polymer gels. In: Dušek K. (eds) Responsive Gels: Volume Transitions I. Advances in Polymer Science, vol 109. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-56791-7_1

  73. Gehrke SH, Andrews GP, Cussler EL (1986) Chemical aspects of gel extraction. Chem Eng Sci 41(8):2153–2160. https://doi.org/10.1016/0009-2509(86)87131-7

    Article  CAS  Google Scholar 

  74. Medeiros SF, Lopes MV, Rossi-Bergmann B, Ré MI, Santos AM (2017) Synthesis and characterization of poly(N-vinylcaprolactam)-based spray-dried microparticles exhibiting temperature and pH-sensitive properties for controlled release of ketoprofen. Drug Dev Ind Pharm 43(9):1519–1529. https://doi.org/10.1080/03639045.2017.1321660

    Article  CAS  PubMed  Google Scholar 

  75. Brønsted H., Kopecek J. (1992) Polyelectrolyte Gels: Properties, Preparation and Applications, R.S. Harland R.S., Prud'homme R.K. (Eds.), American Chemical Society, Washington, DC, USA pp. 285–304

  76. Ilgin P, Ozay H, Ozay O (2019) A new dual stimuli responsive hydrogel: Modeling approaches for the prediction of drug loading and release profile. Eur Polym J 113:244–253. https://doi.org/10.1016/j.eurpolymj.2019.02.003

    Article  CAS  Google Scholar 

  77. Özkahraman B., Tamahkar E. (2017) Synthesis of chitosan-based hydrogels as a novel drug release device for wound healing. Hittite Journal of Science and Engineering, 4(2), 137–144. https://doi.org/10.17350/HJSE19030000060.

  78. Tamahkar E., Özkahraman B. (2015) Potential evaluation of PVA-based hydrogels for biomedical applications. Hittite Journal of Science and Engineering, 2(2), 165–171. https://doi.org/10.17350/HJSE19030000021.

  79. Jannesari M, Varshosaz J, Morshed M, Zamani M (2011) Composite poly(vinyl alcohol) / poly(vinyl acetate) electrospun nanofibrous mats as a novel wound dressing matrix for controlled release of drugs. Int J Nanomedicine 6:993–1003. https://doi.org/10.2147/IJN.S17595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Gupta P, Vermani K, Garg S (2002) Hydrogels: from controlled release to pH-responsive drug delivery. Drug Discov Today 7(10):569–579. https://doi.org/10.1016/S1359-6446(02)02255-9

    Article  CAS  PubMed  Google Scholar 

  81. Korsmeyer R.W., Peppas, N.A. (1983) Macromolecular and modeling aspects of swelling-controlled systems. In: Controlled Release Delivery Systems (Roseman T.J., Mansdorf S.Z., eds), pp. 77–90, Marcel Dekker.

  82. Gutowska A, Bark JS, Kwon IC, Bae YH, Cha Y, Kim SW (1997) Squeezing hydrogels for controlled oral drug delivery. J Control Release 48(2–3):141–148. https://doi.org/10.1016/S0168-3659(97)00041-2

    Article  CAS  Google Scholar 

  83. Zarzycki R, Modrzejewska Z, Nawrotek K (2010) Drug release from hydrogel matrices. Ecol Chem Eng S 17(2):117–136. https://www.researchgate.net/publication/228503143_Drug_release_from_hydrogel_matrices

    CAS  Google Scholar 

  84. Fu Y, Kao WJ (2010) Drug release kinetics and transport mechanisms of non-degradable and degradable polymeric delivery systems. Expert Opin Drug Deliv 7(4):429–444. https://doi.org/10.1517/17425241003602259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Arifin DY, Lee LY, Wang CH (2006) Mathematical modeling and simulation of drug release from microspheres: implications to drug delivery systems. Adv Drug Deliver Rev 58(12-13):1274–1325. https://doi.org/10.1016/j.addr.2006.09.007

    Article  CAS  Google Scholar 

  86. Grassi M, Grassi G (2005) Mathematical modelling and controlled drug delivery: matrix systems. Curr Drug Deliv 2(1):97–116. https://doi.org/10.2174/1567201052772906

    Article  CAS  PubMed  Google Scholar 

  87. Kim AR, Lee SL, Park SN (2018) Properties and in vitro drug release of pH-and temperature-sensitive double cross-linked interpenetrating polymer network hydrogels based on hyaluronic acid/poly(N-isopropylacrylamide) for transdermal delivery of luteolin. Int J Biol Macromol 118:731–740. https://doi.org/10.1016/j.ijbiomac.2018.06.061

    Article  CAS  PubMed  Google Scholar 

  88. Rehage G, Ernst O, Fuhrmann J (1970) Fickian and non-Fickian diffusion in high polymer systems. Discuss Faraday Soc 49:208–221. https://doi.org/10.1039/DF9704900208

    Article  Google Scholar 

  89. Peppas NA, Narasimhan B (2014) Mathematical models in drug delivery: how modeling has shaped the way we design new drug delivery systems. J Control Release 190:75–81. https://doi.org/10.1016/j.jconrel.2014.06.041

    Article  CAS  PubMed  Google Scholar 

  90. García-Couce J, Vernhes M, Bada N, Agüero L, Valdés O, Alvarez-Barreto J, Fuentes G, Almirall A, Cruz, LJ (2021) Synthesis and evaluation of AlgNa-g-poly (QCL-co-HEMA) hydrogels for cartilage tissue engineering and controlled release of betamethasone. Int J Mol Sci 22:5730. https://doi.org/10.3390/ijms22115730

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Mathews AS, Ha CS, Cho WJ, Kim I (2006) Drug delivery system based on covalently bonded poly[N-isopropylacrylamide-co-2-hydroxyethylacrylate]-based nanoparticle networks. Drug Deliv 13(4):245–251. https://doi.org/10.1080/10717540500313067

    Article  CAS  PubMed  Google Scholar 

  92. Zhang JT, Huang SW, Cheng SX, Zhuo RX (2004) Preparation and properties of poly(N-isopropylacrylamide)/poly(N-isopropylacrylamide) interpenetrating polymer networks for drug delivery. J Polym Sci Part A Polym Chem 42(5):1249–1254. https://doi.org/10.1002/pola.11092

    Article  CAS  Google Scholar 

  93. Che Y, Li D, Liu Y, Yue Z, Zhao J, Ma Q, Zhang Q, Tan Y, Yue Q, Meng F (2018) Design and fabrication of a triple-responsive chitosan-based hydrogel with excellent mechanical properties for controlled drug delivery. J Polym Res 25(8):1–17. https://doi.org/10.1007/s10965-018-1568-5

    Article  CAS  Google Scholar 

  94. Lamberti G, Galdi I, Barba, AA (2011) Controlled release from hydrogel-based solid matrices. A model accounting for water up-take, swelling and erosion. Int J Pharm 407(1–2):78–86. https://doi.org/10.1016/j.ijpharm.2011.01.023

    Article  CAS  PubMed  Google Scholar 

  95. Brazel CS, Peppas NA (1996) Pulsatile local delivery of thrombolytic and antithrombotic agents using poly(N-isopropylacrylamide-co-methacrylic acid) hydrogels. J Control Release 39(1):57–64. https://doi.org/10.1016/0168-3659(95)00134-4

    Article  CAS  Google Scholar 

  96. Hoang HT, Jo SH, Phan QT, Park H, Park SH, Oh CW, Lim KT (2021) Dual pH-/thermo-responsive chitosan-based hydrogels prepared using “click” chemistry for colon-targeted drug delivery applications. Carbohydr Polym 260:117812. https://doi.org/10.1016/j.carbpol.2021.117812

    Article  CAS  PubMed  Google Scholar 

  97. Sharpe LA, Daily AM, Horava SD, Peppas NA (2014) Therapeutic applications of hydrogels in oral drug delivery. Expert Opin Drug Deliv 11(6):901–915. https://doi.org/10.1517/17425247.2014.902047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Swamy BY, Chang JH, Ahn H, Lee WK, Chung I (2013) Thermoresponsive N-vinyl caprolactam grafted sodium alginate hydrogel beads for the controlled release of an anticancer drug Cellulose 20(3):1261–1273. https://doi.org/10.1007/s10570-013-9897-3

    Article  CAS  Google Scholar 

  99. Vihola H, Laukkanen A, Hirvonen J, Tenhu H (2002) Binding and release of drugs into and from thermosensitive poly(N-vinyl-caprolactam) nanoparticles. Eur J Pharm Sci 16(1-2):69–74. https://doi.org/10.1016/S0928-0987(02)00076-3

    Article  CAS  PubMed  Google Scholar 

  100. Yang X, Li W, Sun Z, Yang C, Tang D (2020) Electrospun p(NVCL-co-MAA) nanofibers and their pH/temperature dual-response drug release profiles. Colloid Polym Sci 298(6):629–636. https://doi.org/10.1007/s00396-020-04647-y

    Article  CAS  Google Scholar 

  101. González E, Frey MW (2017) Synthesis, characterization and electrospinning of poly(vinyl caprolactam-co-hydroxymethyl acrylamide) to create stimuli-responsive nanofibers. Polymer 108:154–162. https://doi.org/10.1016/j.polymer.2016.11.053

    Article  CAS  Google Scholar 

  102. Roh YH, Moon JY, Hong EJ, Kim HU, Shim MS, Bong KW (2018) Microfluidic fabrication of biocompatible poly(N-vinylcaprolactam)- based microcarriers for modulated thermo-responsive drug release. Colloids Surf B Biointerfaces 172:380–386. https://doi.org/10.1016/j.colsurfb.2018.08.059

    Article  CAS  PubMed  Google Scholar 

  103. Sudhakar K, Madhusudana Rao K, Subha MCS, Chowdoji Rao K, Sadiku ER (2015) Temperature-responsive poly(N-vinylcaprolactam-co-hydroxyethyl methacrylate) nanogels for controlled release studies of curcumin. Des Monomers Polym 18(8):705–713. https://doi.org/10.1080/15685551.2015.1070497

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is a part of the Ph D thesis titled “Usage of Polymeric Hydrogels and Microgels in Drug Release Applications” prepared at Istanbul University in 2014, and it has been supported by the Research Fund of the Istanbul University-Cerrahpaşa, Project Number 29693.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bengi Özkahraman or Işıl Acar.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Özkahraman, B., Acar, I. & Güçlü, G. Synthesis of N-vinylcaprolactam and methacrylic acid based hydrogels and investigation of drug release characteristics. Polym. Bull. 80, 5149–5181 (2023). https://doi.org/10.1007/s00289-022-04301-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-022-04301-3

Keywords

Navigation