Skip to main content
Log in

A review on recent advances on the mechanical and conductivity properties of epoxy nanocomposites for industrial applications

  • Review Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

In recent years, epoxy composites have been found as a great composite material in the design and fabrication of parts for industrial applications, owing to their cost-effectiveness, ease of processing, and excellent properties. However, reports have it that epoxy nanocomposites still face properties degradation on exposure to lightening strikes during performance, especially on aerospace applications. And such limitation of epoxy-reinforced composites occurs due to their poor electrical conductivity and low resistance to thermal effect. Thus, the present review study focuses on the recent advances on improving the mechanical, thermal, and electrical conductivity properties of epoxy-reinforced nanocomposites using carbon-based nanofillers. In addition, the study highlights the potential applications of epoxy nanocomposites in sensors, automobiles, electromagnetic interference shielding, and aerospace. As such, the authors concluded the review with advancement, challenges, and recommendations on the future improvement of epoxy-reinforced conductive nanofiller composites. Additionally, in the field of conductive polymer nanocomposites field of applications, the review will also open an avenue for future study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Jancar J, Douglas JF, Starr FW, Kumar SK, Cassagnau P, Lesser AJ, Sternstein SS (2010) Current issues in research on structure-property relationships in polymer nanocomposites. Polymer 51:3321–3343

    CAS  Google Scholar 

  2. Hussain F, Hojjati M, Okamoto M, Gorga RE (2006) Polymer-matrix nanocomposites, processing, manufacturing, and application: an overview. J Compos Mater 40:1511–1575

    CAS  Google Scholar 

  3. Karen IW, Richard AV (2007) Polymer nanocomposites. MRS Bull 32:314

    Google Scholar 

  4. Koo JH (2006) Polymer nanocomposites: processing, characterization & applications, 2nd edn. McGraw-Hill Education, New York

    Google Scholar 

  5. Ferdous SH, Adnan A (2012) The effects of filler-matrix interface strength, filler shape and filler dispersion on the mechanical properties of polymer nanocomposites. Conf Am Soc Compos. https://doi.org/10.13140/RG.2.1.2170.2889

    Article  Google Scholar 

  6. Shivakumar KN, Swaminathan G, Sharpe M (2006) Carbon/vinyl ester composites for enhanced performance in marine applications. J Reinf Plast Compos 25:1101–1116

    CAS  Google Scholar 

  7. Uyor UO, Popoola API, Popoola OM, Aigbodion VS (2020) Effects of titania on tribological and thermal properties of polymer/ graphene nanocomposites. J Thermoplast Compos Mater 33:1030–1047

    CAS  Google Scholar 

  8. Ogbonna VE, Popoola PI, Popoola OM, Adeosun SO (2021) A review on recent advances on improving polyimide matrix nanocomposites for mechanical, thermal, and tribological applications: challenges and recommendations for future improvement. J Thermoplast Compos Mater. https://doi.org/10.1177/08927057211007904

    Article  Google Scholar 

  9. Idumah DCI (2021) Electrical and thermal properties of conductive polymer nanocomposites. Academia Lett 2290:1–10. https://doi.org/10.20935/AL2290

    Article  Google Scholar 

  10. Imran KA, Shivakumar KN (2018) Graphene-modified carbon/epoxy nanocomposites: electrical, thermal and mechanical properties. J Compos Mater. https://doi.org/10.1177/0021998318780468

    Article  Google Scholar 

  11. Chang L, Friedrich K (2010) Enhancement effect of nanoparticles on the sliding wear of short fiber-reinforced polymer composites: a critical discussion of wear mechanisms. Tribol Int 43:2355–2364

    CAS  Google Scholar 

  12. Chang L, Zhang Z, Breidt C, Friedrich K (2004) Tribological properties of epoxy nanocomposites: enhancement of the wear resistance by incorporating nano-TiO2 particles. Wear 258:141–148

    Google Scholar 

  13. Chang L, Zhang Z, Zhang H, Schlarb AK (2006) On the sliding wear of nanoparticle filled polyamide 66 composites. Compos Sci Technol 66:3188–3198

    CAS  Google Scholar 

  14. Tewari US, Bijwe J (1993) Recent development in tribology of fiber reinforced composites with thermoplastic and thermosetting matrices. In: Friedrich K (ed) Advances in composites tribology. Elsevier Science Publishers, Amsterdam

    Google Scholar 

  15. Shivakumar K, Panduranga R (2013) Interleaved polymer matrix composites – a review. In: 54th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, April 8–11, 2013, Boston, Massachusetts, USA, https://doi.org/10.2514/6.2013-1903

  16. Melnyk L (2017) Research of electrical properties of epoxy composite with carbon fillers. Technol Audit Prod Reserves 3:28–34

    Google Scholar 

  17. Thostenson ET, Chou TW (2006) Processing-structure-multifunctional property relationship in carbon nanotube/epoxy composites. Carbon 44:3022–3029

    CAS  Google Scholar 

  18. Lonjon A, Demont P, Dantras E, Lacabanne C (2012) Electrical conductivity improvement of aeronautical carbon fiber reinforced poly epoxy composites by insertion of carbon nanotubes. J Non Cryst Solids 358:1859–1862

    CAS  Google Scholar 

  19. Qin W, Vautard F, Drzal LT, Yu J (2015) Mechanical and electrical properties of carbon fiber composites with incorporation of graphene nanoplatelets at the fiber–matrix interphase. Compos Part B 69:335–341

    CAS  Google Scholar 

  20. Wei F, Pan B, Lopez J (2018) The tribological properties study of carbon fabric/epoxy composites reinforced by nano-TiO2 and MWNTs. Open Phys 16:1127–1138

    CAS  Google Scholar 

  21. Shirshova N, Bismarck A, Geenhalgh ES, Johansson P, Kalinka G, Marczewski M, Shaffer MSP, Wienrich M (2014) Composition as a means to control morphology and properties of epoxy based dual-phase structural electrolytes. J Phys Chem C 118:28377–28387

    CAS  Google Scholar 

  22. Tao L, Sun Z, Min W, Ou H, Qi L, Yu M (2020) Improving the toughness of thermosetting epoxy resins via blending triblock copolymers. RSC Adv 10:1603–1612

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Ogbonna VE, Popoola API, Popoola OM, Adeosun SO (2021) A review on the recent advances on improving the properties of epoxy nanocomposites for thermal, mechanical, and tribological applications: challenges and recommendations. Polym-Plast Technol Mater. https://doi.org/10.1080/25740881.2021.1967391

    Article  Google Scholar 

  24. Wu Y, Zhang X, Negi A, He J, Hu G, Tian S, Liu J (2020) Synergistic effects of boron nitride (BN) nanosheets and silver (Ag) nanoparticles on thermal conductivity and electrical properties of epoxy nanocomposites. Polymer 12:426. https://doi.org/10.3390/polym12020426

    Article  CAS  Google Scholar 

  25. Zhang X, Wen H, Chen X, Wu Y, Xiao S (2017) Study on the thermal and dielectric properties of SrTiO3 /epoxy nanocomposites. Energies 10:692

    Google Scholar 

  26. Kandare E, Khatibi AA, Yoo S, Wang R, Ma J, Olivier P, Gleizes N, Wang CH (2015) Improving the through-thickness thermal and electrical conductivity of carbon fibre/epoxy laminates by exploiting synergy between graphene and silver nano-inclusions. Compos Part A Appl Sci 69:72–82

    CAS  Google Scholar 

  27. Jang I, Shin KH, Yang I, Kim H, Kim J, Kim WH, Jeon SW, Kim JP (2017) Enhancement of thermal conductivity of BN/epoxy composite through surface modification with silane coupling agents. Coll Surf A 518:64–72

    CAS  Google Scholar 

  28. Wang Z, Cheng Y, Yang M, Huang J, Cao D, Chen S, Wu H (2018) Dielectric properties and thermal conductivity of epoxy composites using core/shell structured Si/SiO2 /polydopamine. Compos Part B 140:83–90

    CAS  Google Scholar 

  29. Chen J, Yan L (2018) Effect of carbon nanotube aspect ratio on the thermal and electrical properties of epoxy nanocomposites. Fuller Nanotub Carbon Nanostruct 26:697–704. https://doi.org/10.1080/1536383X.2018.1476345

    Article  CAS  Google Scholar 

  30. Szeluga U, Pusz S, Kumanek B, Olszowska K, Kobyliukh A, Trzebicka B (2021) Effect of graphene filler structure on electrical, thermal, mechanical, and fire retardant properties of epoxy-graphene nanocomposites - a review. Crit Rev Solid State Mater Sci 46:152–187. https://doi.org/10.1080/10408436.2019.1708702

    Article  CAS  Google Scholar 

  31. Alzahrany A, Chen B (2017) Effect of reduced graphene oxide on the mechanical, thermal and electrical properties of epoxy. J Mater Sci Eng. https://doi.org/10.4172/2169-0022-C1-068

    Article  Google Scholar 

  32. Polizos G, Tuncer E, Sauers I, More KL (2011) Physical properties of epoxy resin/titanium dioxide nanocomposites. Polym Eng Sci 51:87–93

    CAS  Google Scholar 

  33. Huang L, Lv X, Tang Y, Ge G, Zhang P, Li Y (2020) Effect of alumina nanowires on the thermal conductivity and electrical performance of epoxy composites. Polymer 12:2126. https://doi.org/10.3390/polym12092126

    Article  CAS  Google Scholar 

  34. Kareem AA (2020) Enhanced thermal and electrical properties of epoxy/carbon fiber–silicon carbide composites. Adv Compos Lett 29:1–6. https://doi.org/10.1177/2633366X19894598

    Article  Google Scholar 

  35. Vaggar GB, Sirimani VB, Sataraddi DP (2021) Effect of filler materials on thermal properties of polymer composite materials: a review. Int J Eng Res Technol (IJERT) 10:1–5

    Google Scholar 

  36. Ferreira LMM (2012) Study of the behaviour of non-CRIMP fabric laminates by 3D finite element models. PhD thesis, University of Sevilla

  37. Brinson HF, Brinson LC (2008) Polymer engineering science and viscoelasticity: an introduction. Springer, New York

    Google Scholar 

  38. Sukanto H, Raharjo WW, Ariawan D, Triyono K, Kaavesina M (2021) Epoxy resins thermosetting for mechanical engineering. Open Eng 11:797–814

    CAS  Google Scholar 

  39. Park S-J, Seo M-K (2011) Element and processing. In Interf Sci Technol 18:431–499. https://doi.org/10.1016/b978-0-12-375049-5.00006-2

    Article  Google Scholar 

  40. González MG, Cabanelas JC, Baselga J (2012) Applications of FTIR on epoxy resins – identification, monitoring the curing process, phase separation and water uptake. In: Theopile T (ed) Infrared spectroscopy-materials science, engineering and technology. Rijeka Croatia. In Tech Publisher, London

    Google Scholar 

  41. Chen C, Li B, Kanari M, Lu D (2019) Epoxy adhesives. In: Rudawska A (ed) adhesives and adhesive joints in industry applications. Intech Open, London

    Google Scholar 

  42. Ratna D, Samui AB, Chakraborty BC (2004) Flexibility improvement of epoxy resin by chemical modification. Polym Int 53:1882–1887

    CAS  Google Scholar 

  43. Ratna D (2019) Handbook of thermoset resins. iSmithers Publisher, Shropshire

    Google Scholar 

  44. Rudawska A (2017) Epoxy adhesives. Handbook of adhesive technology, 3rd edn. CRC Press, Boca Raton

    Google Scholar 

  45. Schrand AM, Tolle TB (2006) Carbon nanotube and epoxy composites for military applications. In: Dai L (ed) Carbon nanotechnology. Elsevier Science, Amsterdam, pp 633–675

    Google Scholar 

  46. Luhyna N, Rafque R, Iqbal SS, Khaliq J, Saharaudim MS, Wei J, Qadeer Q, Inam F (2020) Novel carbyne filled carbon nanotube – Polymer nanocomposites. Nano World J 6:29–34

    CAS  Google Scholar 

  47. Bryning MB, Islam MF, Kikkawa JM, Yodh AG (2005) Very low conductivity threshold in bulk isotropic single-walled carbon nanotube–epoxy composites. Adv Mater 17:1186–1191

    CAS  Google Scholar 

  48. Liang J, Wang Y, Huang Y, Ma Y, Liu Z, Cai J, Zhang C, Gao H, Chen Y (2009) Electromagnetic interference shielding of graphene/epoxy composites. Carbon 47:922–925

    CAS  Google Scholar 

  49. Donnet JB (2003) Nano and micro composites of polymers elastomers and their reinforcement. Compos Sci Technol 63:1085–1088

    CAS  Google Scholar 

  50. Yeasmin F, Malilik AK, Chisty AH, Robel FN, Shahruzzaman M, Haque P (2021) Remarkable enhancement of thermal stability of epoxy resin through the incorporation of mesoporous silica micro-filler. Heliyon 7:e05959

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Kinloch AJ (1997) Adhesives in engineering. Proc Inst Mech Eng 1997:307–336

    Google Scholar 

  52. Zhang J, Niu H, Zhou J, Xungai W, Tong L (2011) Synergistic effects of PEK-C/VGCNF composite nanofibres on a trifunctional epoxy resin. Compos Sci Technol 71:1060–1067

    CAS  Google Scholar 

  53. Vilaplana J, Baeza F, Galao O, Zornoza E, Garces P (2013) Self-sensing properties of alkali activated blast furnace slag (BFS) composites reinforced with carbon fibers. Materials 6:4776

    PubMed  PubMed Central  Google Scholar 

  54. Du J-H, Sun C, Bai S, Su G, Ying Z, Cheng HM (2011) Microwave electromagnetic characteristics of a microcoiled carbon fibers/paraffin wax composite in Ku band. J Mater Res 17:1232–1236

    Google Scholar 

  55. Endo M, Kim YA, Hayashi T, Nishimura K, Matusita T, Miyashita K, Dresselhaus MS (2001) Vapor-grown carbon fibers (VGCFs): basic properties and their battery applications. Carbon 39:1287–1297

    CAS  Google Scholar 

  56. Mohamed A, Nasser WS, Osman TA, Toprak M, Uheida A (2017) Removal of chromium (VI) from aqueous solutions using surface modified composite nanofibers. J Colloid Interf Sci 505:682–691

    CAS  Google Scholar 

  57. Mohamed A, Osman TA, Toprak MS, Muhammed M, Yilmaz E, Uheida A (2016) Visible light photocatalytic reduction of Cr(VI) by surface modified CNT/titanium dioxide composites nanofibers. J Mol Catal A Chem 424:4553

    Google Scholar 

  58. Mohamed A (2019) Synthesis, characterization, and applications carbon nanofibers. In: Carbon-based nanofillers and their rubber nanocomposites. Elsevier, pp 243–257

    Google Scholar 

  59. Nikolaeva AL, Gofman IV, Yakimansky AV, Ivankova EM, Abalov IV, Baranchik A, Ivanov V (2020) Polyimide-based nanocomposites with binary CeO2/nanocarbon fillers: conjointly enhanced thermal and mechanical properties. Polymers 12:1952

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Poveda RL, Gupta N (2016) Electrical properties of CNF/polymer composites. In: Carbon nanofiber reinforced polymer composites, Springer Briefs in Materials, Springer, Cham, 2016, pp 71–75. https://doi.org/10.1007/978-3-319-23787-9_7

  61. Maruyama B, Alam K (2002) Carbon nanotubes and nanofibers in composite materials. SAMPE J 38:59–70

    CAS  Google Scholar 

  62. Bal S (2010) Experimental study of mechanical and electrical properties of carbon nanofiber/ epoxy composites. J Mater Des 31:2406–2413

    CAS  Google Scholar 

  63. Ladani RB, Wu S, Kinloch AJ, Ghorbani K, Zhang J, Mouritz AP, Wang C-H (2015) Improving the toughness and electrical conductivity of epoxy nanocomposites by using aligned carbon nanofibers. Compos Sci Technol 117:146–158

    CAS  Google Scholar 

  64. Ma P-C, Siddiqui NA, Marom G, Kim J-K (2010) Dispersion and functionalization of carbon nanotubes for polymer-based nanocomposites: a review. Compos Part A Appl Sci Manuf 41:1345–1367. https://doi.org/10.1016/j.compositesa.2010.07.003

    Article  CAS  Google Scholar 

  65. Guadagno L, Raimondo M, Vietri U, Vertuccio L, Barra G, De Vivo B (2015) Effective formulation and processing of nanofilled carbon fiber reinforced composites. RSC Adv 5:6033–6042. https://doi.org/10.1039/C4RA12156B

    Article  CAS  Google Scholar 

  66. Gou J, Tang Y, Liang F, Zhao Z, Firsich D, Fielding J (2010) Carbon nanofiber paper for lightning strike protection of composite materials. Compos B Eng 41:192–198. https://doi.org/10.1016/j.compositesb.2009.06.009

    Article  CAS  Google Scholar 

  67. Kotsilkova R, Ivanov E, Michailova V (2012) Role of surface functionalisation of multiwall carbon nanotubes on nanomechanical and electrical properties of epoxy nanocomposites. Nanosci Nanotechnol Lett 4:1–8. https://doi.org/10.1166/nnl.2012.1468

    Article  Google Scholar 

  68. Kuzhir PP, Paddubskaya AG, Maksimenko SA, Kuznetsov VL, Moseenkov SI, Romanenko A, Shenderova O, Macutkevic J, Valusis G, Lambin P (2012) Carbon onion composites for EMC applications. IEEE Trans Electromagn Compat 54:6–16. https://doi.org/10.1109/TEMC.2011.2173348

    Article  Google Scholar 

  69. Ivanov E, Kotsilkova R, Krusteva E, Logakis E, Kyritsis A, Pissis P, Silvestre C, Duraccio D, Pezzuto M (2011) Effects of processing conditions on rheological, thermal, and electrical properties of multiwall carbon nanotube/epoxy resin composites. J Polym Sci B Polym Phys 49:431–442. https://doi.org/10.1002/polb.22199

    Article  CAS  Google Scholar 

  70. Kotsilkova R, Ivanov E, Bychanok D, Paddubskaya A, Demidenko M, Macutkevic J, Maksimenko S, Kuzhir P (2015) Effects of sonochemical modification of carbon nanotubes on electrical and electromagnetic shielding properties of epoxy composites. Compos Sci Technol 106:85–92. https://doi.org/10.1016/j.compscitech.2014.11.004

    Article  CAS  Google Scholar 

  71. Kuzhir P, Paddubskaya A, Plyushch A, Volynets N, Maksimenko S, Macutkevic J (2013) Epoxy composites filled with high surface area-carbon fillers: optimization of electromagnetic shielding, electrical, mechanical, and thermal properties. J Appl Phys 114:164304. https://doi.org/10.1063/1.4826529

    Article  CAS  Google Scholar 

  72. Guadagno L, Vietri U, Raimondo M, Vertuccio L, Barra G, De Vivo B (2015) Correlation between electrical conductivity and manufacturing processes of nanofilled carbon fiber reinforced composites. Compos B Eng 80:7–14. https://doi.org/10.1016/j.compositesb.2015.05.025

    Article  CAS  Google Scholar 

  73. Raimondo M, Guadagno L, Vertuccio L, Naddeo C, Barra G, Spinelli G, Lamberti P, Tucci V, Lafdi K (2018) Electrical conductivity of carbon nanofiber reinforced resins: potentiality of Tunneling Atomic Force Microscopy (TUNA) technique. Compos Part B 143:148–160

    CAS  Google Scholar 

  74. Gomes LC, Mergulhão FJ (2017) SEM analysis of surface impact on biofilm antibiotic treatment. Scanning 2017:2960194. https://doi.org/10.1155/2017/2960194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Farina I, Fabbrocino F, Colangelo F, Feo L, Fraternali F (2016) Surface roughness effects on the reinforcement of cement mortars through 3D printed metallic fibers. Compos B Eng 99:305–311. https://doi.org/10.1016/j.compositesb.2016.05.055

    Article  CAS  Google Scholar 

  76. De Vivo B, Lamberti P, Spinelli G, Tucci VA (2014) Morphological and structural approach to evaluate the electromagnetic performances of composites based on random networks of carbon nanotubes. J Appl Phys 115:154311. https://doi.org/10.1063/1.4871670

    Article  CAS  Google Scholar 

  77. Stauffer D, Aharony A (1994) Introduction to percolation theory, Revised, 2nd edn. Taylor & Francis, London

    Google Scholar 

  78. Tirumali M, Kandasubramanian B, Kumaraswamy A, Subramani NK (2018) Fabrication, physicochemical characterizations and electrical conductivity studies of modified carbon nanofiber-reinforced epoxy composites: Effect of 1-Butyl-3-methylimidazolium tetrafluoroborate ionic liquid. Polym-Plast Technol Eng 57:218–228. https://doi.org/10.1080/03602559.2017.1320719

    Article  CAS  Google Scholar 

  79. Maka H, Spychaj T, Pilawka R (2014) Epoxy resin/phosphonium ionic liquid/carbon nanofiller systems: chemorheology and properties. eXPRESS Polym Lett 8:767–778

    Google Scholar 

  80. Swapnil AD, Kailas LW, Mahesh NV, Mahesh NV, Diwakar ZS, Changkyoo Y (2016) Synthesis, characterization and application of 1-butyl-3-methylimidazolium tetrafluoroborate for extractive desulphurization of liquid fuel. Arabian J Chem 9:578–587

    Google Scholar 

  81. Soares BG, Livi S, Duchet-Rumeau J, Gerard J-F (2011) Synthesis and characterization of epoxy/MCDEA networks modified with imidazolium-based ionic liquids. Macromol Mater Eng 296:826–834

    CAS  Google Scholar 

  82. Zhu J, Wei S, Ryu J, Budhathoki M, Liang G, Guo Z (2010) In situ stabilized carbon nanofiber (CNF) reinforced epoxy nanocomposites. J Mater Chem 20:4937–4948

    CAS  Google Scholar 

  83. Ghasemi AR, Mohammadi MM, Mohandes M (2015) The role of carbon nanofibers on thermo-mechanical properties of polymer matrix composites and their effect on reduction of residual stresses. Compos Part B 77:519–527

    CAS  Google Scholar 

  84. Pervin F, Zhou Y, Rangarl VK, Jeelani S (2005) Testing and evaluation on the thermal and mechanical properties of carbon nano fiber reinforced SC-15 epoxy. Mater Sci Eng A 405:246–253

    Google Scholar 

  85. Rana S, Alagirusamy R, Joshi M (2011) Development of carbon nanofibre incorporated three phase carbon/epoxy composites with enhanced mechanical, electrical and thermal properties. Compos Part A 42:439–445

    Google Scholar 

  86. Fiedler B, Gojny FH, Wichmann MHG, Nolte MCM, Schulte K (2006) Fundamental aspects of nano-reinforced composites. Compos Sci Technol 66:3115–3125

    CAS  Google Scholar 

  87. Al-Saleh MH, Sundararaj U (2009) A review of vapour grown carbon nanofiber/ polymer conductive composites. Carbon 47:2–22

    CAS  Google Scholar 

  88. Rana S, Alagirusamy R, Joshi M (2009) A review on carbon epoxy nanocomposites. J Reinf Plast Compos 28:461–487

    CAS  Google Scholar 

  89. Feng L, Xie N, Zhong J (2014) Carbon Nanofibers and Their Composites: a review of synthesizing, properties and applications. Materials 7:3919–3945

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58

    CAS  Google Scholar 

  91. Iijima S, Ichihashi T (1993) Single-shell carbon nanotubes of 1-nm diameter. Nature 363:603–605

    CAS  Google Scholar 

  92. Wang H, Bao Z (2015) Conjugated polymer sorting of semiconducting carbon nanotubes and their electronic applications. Nano Today 10:737–758

    CAS  Google Scholar 

  93. Kaseem M, Hamad K, Ko YG (2016) Fabrication and materials properties of polystyrene/carbon nanotube (PS/CNT) composites: a review. Eur Polym J 79:36–62

    CAS  Google Scholar 

  94. Ayatollahi MR, Shadlou S, Shokrieh MM, Chitsazzadeh M (2011) Effect of multiwalled carbon nanotube aspect ratio on mechanical and electrical properties of epoxy-based nanocomposites. Polym Test 30:548–556

    CAS  Google Scholar 

  95. Russ M, Rahatekar SS, Koziol K, Farmer B, Peng H-X (2013) Length-dependent electrical and thermal properties of carbon nanotube-loaded epoxy nanocomposites. Compos Sci Technol 81:42–47

    CAS  Google Scholar 

  96. Moniruzzaman M, Winey KI (2006) Polymer nanocomposites containing carbon nanotubes. Macromolecules 39:5194–5205

    CAS  Google Scholar 

  97. Yengejeh SI, Kazemi SA, Ochsner A (2017) Carbon nanotubes as reinforcement in composites: a review of the analytical, numerical and experimental approaches. Compos Mater Sci 136:85–101

    Google Scholar 

  98. Mittal G, Dhand V, Rhee KY, Park S-J, Lee WR (2015) A review on carbon nanotubes and graphene as fillers in reinforced polymer nanocomposites. J Ind Eng Chem 21:11–25

    CAS  Google Scholar 

  99. Krainoi A, Kummerlowe C, Nakaramontri Y, Vennemann N, Pichaiyut S, Wisunthorn S, Nakason C (2018) Influence of critical carbon nanotube loading on mechanical and electrical properties of epoxidized natural rubber nanocomposites. Polym Test 66:122–136

    CAS  Google Scholar 

  100. Sharma S, Singh BP, Chauhan SS, Jyoti J, Arya AK, Dhakate SR, Kumar V, Yokozeki T (2018) Enhanced thermomechanical and electrical properties of multiwalled carbon nanotube paper reinforced epoxy laminar composites. Compos Part A 104:129–138

    CAS  Google Scholar 

  101. Sandler JKW, Kirk JE, Kinloch IA, Shaffer MSP, Windle AH (2003) Ultra-low electrical percolation threshold in carbon-nanotube-epoxy composites. Polymers 44:5893–5899

    CAS  Google Scholar 

  102. Macutkevic J, Kuzhir PP, Paddubskaya AG, Banys J, Maksimenko SA, Stefanutti E, Micciulla F, Bellucci S (2013) Broadband dielectric/electric properties of epoxy thin films filled with multiwalled carbon nanotubes. J Nanophoton 7:073593

    Google Scholar 

  103. Roy S, Petrova RS, Mitra S (2018) Effect of carbon nanotube (CNT) functionalization in epoxy-CNT composites. Nanotechnol Rev 7:475–485

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Aigbodion AS (2021) Explicit microstructure and electrical conductivity of epoxy/carbon nanotube and green silver nanoparticle enhanced hybrid dielectric composites. Nanocompos J 7:35–43. https://doi.org/10.1080/20550324.2020.1868690

    Article  CAS  Google Scholar 

  105. Yusof Y, Zaidi MI, Johan MR (2016) Enhanced structural, thermal, and electrical properties of multiwalled carbon nanotubes hybridized with silver nanoparticles. J Nanomater 2016:1–9. https://doi.org/10.1155/2016/6141496

    Article  CAS  Google Scholar 

  106. Neto JSS, Banea MD, Cavalcanti DKK, Queiroz HFM, Aguiar RAA (2020) Analysis of mechanical and thermal properties of epoxy multiwalled carbon nanocomposites. J Compos Mater 54:4831–4840

    CAS  Google Scholar 

  107. Smolen P, Czujko T, Komorek Z, Dominik G, Anna R, Malgorzata P-O (2021) Mechanical and electrical properties of epoxy composites modified by functionalized multiwalled carbon nanotubes. Mater 14:3325. https://doi.org/10.3390/ma14123325

    Article  CAS  Google Scholar 

  108. Pereira ECL, Soares BG (2016) Conducting epoxy networks modified with non-covalently functionalized multi-walled carbon nanotube with imidazolium-based ionic liquid. J Appl Polym Sci 133:43976

    Google Scholar 

  109. Backes EH, Sene TS, Passador FR, Pessan LA (2018) Electrical, thermal and mechanical properties of epoxy/CNT/calcium carbonate nanocomposites. Mater Res 21:e20170801. https://doi.org/10.1590/1980-5373-MR-2017-0801

    Article  Google Scholar 

  110. Kim P, Shi L, Majumdar A, Meceuen P (2001) Thermal transport measurements of individual multiwalled nanotubes. Phys Rev Lett 87:2155021

    Google Scholar 

  111. Biercuk MJ, Llaguno MC, Radosvljevic M, Hyun JK, Johnson AT (2002) Carbon nanotube composites for thermal management. Appl Phys Lett 80:2767

    CAS  Google Scholar 

  112. Akcin Y, Karakaya S, Soykasap O (2016) Electrical, thermal and mechanical properties of CNT treated prepreg CFRP composites. Mater Sci Appl 7:465–483. https://doi.org/10.4236/msa.2016.79041

    Article  CAS  Google Scholar 

  113. Vahedi F, Shahverdi HR, Shokrieh MM (2014) Effects of carbon nanotube content on the mechanical and electrical properties of epoxy-based composites. New Carbon Mater 29:419–425

    Google Scholar 

  114. Yakovlev EA, Yakovlev N, Gorshkov NV, Yudintseva T, Burmistrov IN, Lyamina GV (2019) Enhancement of mechanical and electrical properties of epoxy-based composites filled with intact or oxidized carbon nanotubes. An Int J 10:241–251. https://doi.org/10.1615/CompMechComputApplIntJ.2018027488

    Article  Google Scholar 

  115. Tanabi H, Erdal M (2019) Effect of CNTs dispersion on electrical, mechanical and strain sensing properties of CNT/epoxy nanocomposites. Results Phys 12:486–503

    Google Scholar 

  116. Cha J, Jin S, Shim JH, Park CS, Ryu HJ, Hong HS (2016) Functionalization of carbon nanotubes for fabrication of CNT/epoxy nanocomposites. Mater Des 95:1–8

    CAS  Google Scholar 

  117. Ma C, Liu H-Y, Du X, Mach L, Xu F, Mai Y-W (2015) Fracture resistance, thermal and electrical properties of epoxy composites containing aligned carbon nanotubes by low magnetic field. Compos Sci Technol 114:126–135

    CAS  Google Scholar 

  118. Paun C, Obreja C, Comanescu F, Tucureanu V, Tutunaru O, Romanitan C, Ionescu O, Gavrila DE, Paltanea VM, Stoica V (2021) Paltanea G (2021) Studies on structural MWCNT/epoxy nanocomposites for EMI shielding applications. IOP Conf Ser Mater Sci Eng 1009:012046. https://doi.org/10.1088/1757-899X/1009/1/012046

    Article  CAS  Google Scholar 

  119. Zakaria MR, Abdul Kudus MH, Akil HM (2017) Comparative study of graphene nanoparticle and multiwall carbon nanotube filled epoxy nanocomposites based on mechanical, thermal and dielectric properties. Compos Part B Eng 119:57–66

    CAS  Google Scholar 

  120. Jiang X, Drzal LT (2011) Improving electrical conductivity and mechanical properties of high density polyethylene through incorporation of paraffin wax coated exfoliated graphene nanoplatelets and multiwall carbon nano-tubes. Compos Part A 42:1840–1849

    Google Scholar 

  121. Yasmin A, Abot JL, Daniel IM (2003) Processing of clay/ epoxy nanocomposites by shear mixing. Scr Mater 49:81–86

    CAS  Google Scholar 

  122. Biswas S, Fukushima H, Drzal LT (2011) Mechanical and electrical property enhancement in exfoliated graphene nanoplatelet/liquid crystalline polymer nanocomposites. Compos Part A 42:371–375

    Google Scholar 

  123. Singh V, Joung D, Zhai L, Das S, Khondaker SI, Seal S (2011) Graphene based materials: past, present and future. Prog Mater Sci 56:1178–1271

    CAS  Google Scholar 

  124. Sengupta R, Bhattacharya M, Bandyopadhyay S, Bhowmick AK (2011) A review on the mechanical and electrical properties of graphite and modified graphite reinforced polymer composites. Prog Polym Sci 36:638–670

    CAS  Google Scholar 

  125. Kuilla T, Bhadra S, Yao D, Kim NH, Bose S, Lee JH (2010) Recent advances in graphene based polymer composites. Prog Polym Sci 35:1350–1375

    CAS  Google Scholar 

  126. Thostenson ET, Chou TW (2006) Processing-structure-multi-functional property relationship in carbon nanotube/epoxy composites. Carbon 44:3022–3029

    CAS  Google Scholar 

  127. Lee C, Wei X, Kysar JW, Hone J (2008) Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321:385–388

    CAS  PubMed  Google Scholar 

  128. Balandin AA, Ghosh S, Bao W, Calizo I, Teweldebrhan D, Miao F, Lau CN (2008) Superior thermal conductivity of single-layer graphene. Nano Lett 8:902–907

    CAS  PubMed  Google Scholar 

  129. XG Sciences Inc. xGnP brand graphene nanoplatelets product information. Lansing, MI: Author, 2015

  130. Imran KA, Shivakumar KN (2018) Enhancement of electrical conductivity of epoxy using graphene and determination of their thermo-mechanical properties. J Reinf Plast Compos 37:118–133

    CAS  Google Scholar 

  131. Gong S, Ni H, Jiang L, Cheng Q (2017) Learning from nature: constructing high performance graphene-based nanocomposites. Mater Today 20:210–219

    CAS  Google Scholar 

  132. Chang C-Y, Ju S-P, Chang S-C, Huang S-C, Yang H-W (2014) The thermal conductivity and mechanical properties of poly(p-phenylene sulfide)/oxided-graphene and poly(p-phenylene sulfide)/defect-graphene nano-composites by molecular dynamics simulation. RSC Adv 4:26074–26080

    CAS  Google Scholar 

  133. King JA, Klimek DR, Miskioglu I, Odegard GM (2015) Mechanical properties of graphene nanoplatelet/epoxy composites. J Compos Mater 49:659–668

    CAS  Google Scholar 

  134. King JA, Klimek DR, Miskioglu I, Odegard GM (2013) Mechanical properties of graphene nanoplatelet/ epoxy composites. J Appl Polym Sci 128:4217–42231

    CAS  Google Scholar 

  135. Wang F, Drzal LT, Qin Y, Huang Z (2015) Mechanical properties and thermal conductivity of graphene nanoplatelet/epoxy composites. J Mater Sci 50:1082–1093

    CAS  Google Scholar 

  136. Chatterjee S, Nafezarefi F, Tai NH, Schlagenhauf L, Nuesch FA, Chu BTT (2012) Size and synergy effects of nanofiller hybrids including graphene nanoplatelets and carbon nanotubes in mechanical properties of epoxy composites. Carbon 50:5380–5538

    CAS  Google Scholar 

  137. Halpin J (1969) Stiffness and expansion estimates for oriented short fiber composites. J Compos Mater 3:732–734

    Google Scholar 

  138. Mori T, Tanaka K (1973) Average stress in matrix and average elastic energy of materials with misfitting inclusions. Acta Metall 21:571–574

    Google Scholar 

  139. Cox H (1952) The elasticity and strength of paper and other fibrous materials. Br J Appl Phys 3:72–79

    Google Scholar 

  140. Gao XL, Li K (2005) A shear-lag model for carbon nanotube reinforced polymer composites. Int J Solids Struct 42:1649–1667

    Google Scholar 

  141. Tjong SC (2014) Polymer composites with graphene nanofillers: electrical properties and applications. J Nanosci Nanotechnol 14:1154–1168

    CAS  PubMed  Google Scholar 

  142. Kim H, Abdala AA, Macosko CW (2010) Graphene/polymer nanocomposites. Macromolecules 43:6515–6530

    CAS  Google Scholar 

  143. Ahmadi-Moghadam B, Sharafimasooleh M, Shadlou S, Taheri F (2015) Effect of functionalization of graphene nanoplatelets on the mechanical response of graphene/epoxy composites. Mater Des 66:142–149

    CAS  Google Scholar 

  144. Li Y, Zhang H, Porwal H, Huang Z, Bilotti E, Peijs T (2017) Mechanical, electrical and thermal properties of in-situ exfoliated graphene/epoxy nanocomposites. Compos Part A 95:229–236

    CAS  Google Scholar 

  145. Netkueakul W, Fischer B, Walder C, Nuesch F, Rees M, Jovic M, Gaan S, Jacob P, Wang J (2020) Effects of combining graphene nanoplatelet and phosphorous flame retardant as additives on mechanical properties and flame retardancy of epoxy nanocomposite. Polymers 12:2349

    CAS  PubMed  PubMed Central  Google Scholar 

  146. International Electrotechnical Commission (IEC). IEC 61340–5–1:2016 Electrostatics—Part 5–1: Protection of electronic devices from electrostatic phenomena—General requirements. In IEC standards; IEC Central Office: Geneva, Switzerland, 2016

  147. Geim AK, Novoselov KS (2007) The rise of graphene. Nat Mater 6:183–191

    CAS  PubMed  Google Scholar 

  148. Zhang Y, Zhu Y, Lin G, Ruoff R, Hu N, Schaefer DW, Mark JE (2013) What factors control the mechanical properties of poly(dimethyl siloxane) reinforced with nanosheets of 3-Amino propyl triethoxy silane modified graphene oxide? Polymers 54:3605–3611

    CAS  Google Scholar 

  149. Han Z, Fina A (2011) Thermal conductivity of carbon nanotubes and their polymer nanocomposites: a review. Prog Polym Sci 36:914–944

    CAS  Google Scholar 

  150. Rafiee M, Rafiee J, Wang Z, Song H, Yu Z-Z, Krotkar N (2009) Enhanced mechanical properties of nanocomposites at low graphene content. ACS Nano 3:3884–3890

    CAS  PubMed  Google Scholar 

  151. Abdin Z, Alim MA, Saidur R, Islam MR, Rashmi W, Mekhilef S, Wadi A (2013) Solar energy harvesting with the application of nano-technology. Renew Sustain Energy Rev 26:837–852

    CAS  Google Scholar 

  152. Zhou G, Yao H, Zhou Y, Weito W (2018) Self-assembled complexes of graphene oxide and oxidized vapor-grown carbon fibers for simultaneously enhancing the strength and toughness of epoxy and multi-scale carbon fiber/epoxy composites. Carbon 137:6–18

    CAS  Google Scholar 

  153. Sun W, Hu R, Liu H, Zeng M, Yang M, Wang H, Zhu M (2014) Embedding nano-silicon in graphene nanosheets by plasma assisted milling for high capacity anode materials in lithium ion batteries. J Power Sour 268:610–618

    CAS  Google Scholar 

  154. Gómez-Navarro C, Burghard M, Kern K (2008) Elastic properties of chemically derived single graphene sheets. Nano Lett 8:2045–2049

    PubMed  Google Scholar 

  155. Naresh K, Khan KA, Umer R (2021) Experimental characterization and modeling multifunctional properties of epoxy/graphene oxide nanocomposites. Polymers 13:2831. https://doi.org/10.3390/polym13162831

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Wang L, Ma Z, Zhang Y, Chen L, Cao D, Gu J (2021) Polymer-based EMI shielding composites with 3D conductive networks: a mini-review. Sus Mat. https://doi.org/10.1002/sus2.21

    Article  Google Scholar 

  157. Olowojoba GB, Kopsidas S, Eslava S, Gutierrez ES, Kinloch AJ, Mattevi C, Rocha VG, Talylar AC (2017) A facile way to produce epoxy nanocomposites having excellent thermal conductivity with low contents of reduced graphene oxide. J Mater Sci 52:7323–7344. https://doi.org/10.1007/s10853-017-0969-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Yu Z, Wang Z, Li H, Jianxin T, Xu L (2019) Shape memory epoxy polymer (SMEP) composite mechanical properties enhanced by introducing graphene oxide (GO) into the matrix. Materials 12:1107

    CAS  PubMed  PubMed Central  Google Scholar 

  159. Song P, Qiu H, Wang L, Liu X, Zhang J, Kong J, Gu J (2020) Honeycomb structural rGO-MXene/epoxy nanocomposites for superior electromagnetic interference shielding performance. Sus Mater Technol 24:e00153

    CAS  Google Scholar 

  160. Zhang Y, Wang L, Zhang J, Song P, Xiao Z, Liang C, Qiu H, Kong J, Gu J (2019) Fabrication and investigation on the ultra-thin and flexible Ti3C2Tx/co-doped polyaniline electromagnetic interference shielding composite films. Compos Sci Technol 183:107833

    CAS  Google Scholar 

  161. Wu X, Han B, Zhang H-B, Xie X, Tu T, Zhang Y, Dai Y, Yang R, Yu Z-Z (2020) Compressible, durable and conductive polydimethylsiloxane-coated MXene foams for high performance electromagnetic interference shielding. Chem Eng J 381:122622

    CAS  Google Scholar 

  162. Liang C, Qiu H, Han Y, Gu H, Song P, Wang L, Kong J, Cao D, Gu J (2019) Superior electromagnetic interference shielding 3D graphene nanoplatelets/reduced graphene oxide foam/epoxy nanocomposites with high thermal conductivity. J Mater Chem C 7:2725–2733

    CAS  Google Scholar 

  163. Liang X, Dai F (2020) Epoxy nanocomposites with reduced graphene oxide-constructed three-dimensional networks of single wall carbon nanotube for enhanced thermal management capability with low filler loading. ACS Appl Mater Interf 12:3051–3058

    CAS  Google Scholar 

  164. Siraimeettan K, Arumugam H, Ayyavu C, Ponnaiah G, Muthukaruppan A (2021) Mechanical, thermal and dielectric studies of reduced graphene oxide reinforced cardanol based polybenzoxazine/epoxy nanocomposites. Compos Interf 28:461–476

    CAS  Google Scholar 

  165. Diang J, Huang Y, Han T (2016) Functional graphene nanoflakes/cyanate/epoxy nanocomposites: mechanical, dielectric and thermal properties. Iranian Polym J 25:69–77

    Google Scholar 

  166. Eqra R, Moghim MH, Eqra NA (2021) study on the mechanical properties of graphene oxide/epoxy nanocomposites. Polym Polym Compos. https://doi.org/10.1177/09673911211011150

    Article  Google Scholar 

  167. Zhang X, Alloul O, He Q, Zhu J, Verde MJ, Li Y, Wei S, Guo Z (2013) Strengthened magnetic epoxy nanocomposites with protruding nanoparticles on the graphene nanosheets. Polymers 54:3594–3604

    CAS  Google Scholar 

  168. Hsiao K-T, Alms J, Advani SG (2003) Use of epoxy/multiwalled carbon nanotubes as adhesives to join graphite fibre reinforced polymer composites. Nanotechnology 14:791–793

    CAS  Google Scholar 

  169. Agubra V, Mahesh HV (2014) Environmental degradation of E-glass/nanocomposite under the combined effect of UV radiation, moisture, and rain. J Polym Sci Part B: Polym Phys 52:1024–1029

    CAS  Google Scholar 

  170. Shi X, Nguyen TA, Suo Z, Liu Y, Avci R (2009) Effect of nanoparticles on the anticorrosion and mechanical properties of epoxy coating. Surf Coat Technol 204:237–245

    CAS  Google Scholar 

  171. Abdollahi H, Ershad-Langroudi A, Salimi A, Rahimi A (2014) Anticorrosive coatings prepared using epoxy−silica hybrid nanocomposite materials. Ind Eng Chem Res 53:10858–10869

    CAS  Google Scholar 

  172. Guo J, Zhang X, Gu H, Wang Y, Yang X, Ding D, Long J, Tadakamalla S, Wang Q, Khan MA, Liu J, Zhang X, Weeks BL, Sun L, Young AP, Wei S, Guo Z (2014) Reinforced magnetic epoxy nanocomposites with conductive polypyrrole nanocoating on nanomagnetite as a coupling agent. RSC Adv 4:36560–36572

    CAS  Google Scholar 

  173. Jin H, Mangun CL, Stradley DS, Moore JS, Sottos NR, White SR (2012) Self-healing thermoset using encapsulated epoxy-amine healing chemistry. Polymers 53:581–587

    CAS  Google Scholar 

  174. Guo J, Gu H, Wei H, Zhang Q, Haldolaarachchige N, Li Y, Young DP, Wei S, Guo Z (2013) Magnetite−polypyrrole metacomposites: dielectric properties and magnetoresistance behavior. J Phys Chem C 117:10191–10202

    CAS  Google Scholar 

  175. Qing Y, Wang X, Zhou Y, Huang Z, Luo F, Zhou W (2014) Enhanced microwave absorption of multi-walled carbon nanotubes/epoxy composites incorporated with ceramic particles. Compos Sci Technol 102:161–168

    CAS  Google Scholar 

  176. Gu H, Ma C, Gu J (2016) An overview of multifunctional epoxy Nanocomposites. J Mater Chem C 4:5890–5906

    CAS  Google Scholar 

  177. Kumar S, Krishnan S, Samal SK (2020) Recent developments of epoxy nanocomposites used for aerospace and automotive application. In: Clarizia G, Bernardo P (eds) Diverse applications of organic-inorganic nanocomposites. IGI Global, Pittsburgh, PA, USA, pp 162–190. https://doi.org/10.4018/978-1-7998-1530-3.ch007

    Chapter  Google Scholar 

  178. Coelho MC, Torrão G, Emami N, Gracio J (2012) Nanotechnology in automotive industry: research strategy and trends for the future-small objects, big impacts. J Nanosci Nanotechnol 12:1–10

    Google Scholar 

  179. Paipetis A, Kostopoulos V (2012) Carbon nanotube enhanced aerospace composite materials: a new generation of multifunctional hybrid structural composites. Springer Science & Business Media, Berlin

    Google Scholar 

  180. Binder K, Gennes PG, Giannelis EP, Grest GS, Hervet H, Krishnamoorti R, Leger L, Manias E, Raphael E, Wang S-Q (1999) Polymers in confined environments, 1st edn. Springer-Verlag, Berlin

    Google Scholar 

  181. Bhat A, Budholiya S, Raj SA, Sultan MTH, Hui D, Shah AUM, Safri SUA (2021) Review on nanocomposites based on aerospace applications. Nanotechnol Rev 10:237–253

    CAS  Google Scholar 

  182. Manocha LM, Valand J, Patel N, Warrier A, Manocha S (2006) Nanocomposites for structural applications. Indian J Pure Appl Phys 44:135–142

    CAS  Google Scholar 

  183. Gojny FH, Schulte K (2004) Functionalisation effect on the thermo-mechanical behaviour of multi-wall carbon nanotube/epoxy-composites. Compos Sci Technol 64:2303–2308

    CAS  Google Scholar 

  184. Choi Y-K, Sugimoto K-I, Song S-M, Gotoh Y, Ohkoshi Y, Endo M (2005) Mechanical and physical properties of epoxy composites reinforced by vapor grown carbon nanofibers. Carbon 43:2199–2208

    CAS  Google Scholar 

  185. Qilin M, Jihui W, Fuling W, Zhixiong H, Xiaolin Y, Tao W (2008) Conductive behaviors of carbon nanofibers reinforced epoxy composites. J Wuhan Univ Techno Mater Sci Ed 23:139–142

    Google Scholar 

  186. Seretis GV, Theodorakopoulos ID, Manolakos DE, Provatidis CG (2018) Effect of sonication on the mechanical response of graphene nanoplatelets/glass fabric/epoxy laminated nanocomposites. Compos Part B 147:33–41

    CAS  Google Scholar 

  187. Tewari US, Bijwe J (1993) Recent development in tribology of fiber reinforced composites with thermoplastic and thermosetting matrices. In: Friedrich K (ed) Advances in composites tribology. Elsevier Science Publishers, Amsterdam, pp 159–207

    Google Scholar 

  188. Radzuan NAM, Sulong AB (2018) Somalu MR (2018) Extrusion process of polypropylene composites reinforced milled carbon fibre for conductive polymer composite application. MATEC Web Conf 248:01012. https://doi.org/10.1051/matecconf/201824801012

    Article  CAS  Google Scholar 

  189. Musa MZ, Kasbi KA, Aziz AA, Sarah MSP, Mamat MH, Rusop M (2011) Aluminium doping of titanium dioxide thin films using sol–gel method. Mater Res Innov 15:137–140

    Google Scholar 

  190. Said NDM, Sahdan MZ, Ahmad A, Senain I, Bakri AS, Abdullah SA, Rahim MS (2016) Effects of Al doping on structural, morphology, electrical and optical properties of TiO2 thin film. AIP Conf Proc 2016:1788. https://doi.org/10.1063/1.4968383

    Article  Google Scholar 

  191. Choi J, Park H, Hoffmann MR (2010) Effects of single metal-ion doping on the visible-light photoreactivity of TiO2. J Phys Chem C 114:783–792

    CAS  Google Scholar 

  192. Mohd Said ND, Sahdan MZ, Senain I, Bakri AS, Abdullah S, Mokhter F, Ahmad A, Saim H (2016) Effects of annealing temperature on structural, morphology and optical properties of TiO2 thin film. ARPN J Eng Appl Sci 11:4924–4928

    Google Scholar 

  193. Schmidta J, Boehling M, Burkhardt U, Grin Y (2007) Preparation of titanium diboride TiB2 by spark plasma sintering at slow heating rate. Sci Technol Adv Mater 8:376–382

    Google Scholar 

Download references

Acknowledgements

The authors wish to thank the Center for Energy and Electric Power, and Center for Surface Engineering Research, Tshwane University of Technology (TUT), South Africa, for their financial support in the course of this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. E. Ogbonna.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ogbonna, V.E., Popoola, A.P.I. & Popoola, O.M. A review on recent advances on the mechanical and conductivity properties of epoxy nanocomposites for industrial applications. Polym. Bull. 80, 3449–3487 (2023). https://doi.org/10.1007/s00289-022-04249-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-022-04249-4

Keywords

Navigation