Skip to main content

Advertisement

Log in

Development and evaluation of polymeric nanogels to enhance solubility of letrozole

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

This study scrutinized the use of monomer hydroxyethyl methacrylate, 2-carboxyethyl acrylate, initiator ammonium persulfate and cross-linker N′N′-methylene bisacrylamide to form polymeric composites by employing free radical polymerization of poorly water-soluble drug Letrozole (LTE). Letrozole is an aromatase inhibitor used in the treatment of breast cancer. Swelling index %, entrapment efficiency and solubility studies of developed formulations (LTE1-LTE9) were evaluated. Swelling studies indicated an increased swelling index at pH 7.4. The solubility of developed formulation was enhanced as compared to pure drug and β-cyclodextrin-Letrozole complex. Characterization of developed polymeric composites was performed by FTIR, DSC/TGA, SEM, XRD and zeta size. FTIR studies confirmed the encapsulation of Letrozole within polymeric composites. DSC/TGA indicated a thermally stable formulation. Surface morphology was assessed by SEM. XRD confirmed the amorphous formulation. The release study followed the Korsmeyer–Peppas model. In toxicity studies, clinical observations, hematological parameters and histopathological studies showed that developed polymeric composites were not toxic. Conclusively, our findings suggest that developed polymeric composites were safe and increased the solubility of poorly water-soluble drug and can be used as an effective platform for other hydrophobic drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data availability

1. The authors confirm that the data supporting the findings of this study are available within the article. 2. Raw data were generated at Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad-Punjab, Pakistan. 3. The data that support the findings of this study are available on request from the corresponding author.

References

  1. DeSantis C et al (2011) Breast cancer statistics, 2011. CA Cancer J Clin 61(6):408–418

    Google Scholar 

  2. Arimidex T (2008) Effect of anastrozole and tamoxifen as adjuvant treatment for early-stage breast cancer: 100-month analysis of the ATAC trial. Lancet Oncol 9(1):45–53

    Google Scholar 

  3. Castonguay A et al (2012) New ruthenium (II)–letrozole complexes as anticancer therapeutics. J Med Chem 55(20):8799–8806

    CAS  PubMed  Google Scholar 

  4. Darby SC et al (2013) Risk of ischemic heart disease in women after radiotherapy for breast cancer. N Engl J Med 368(11):987–998

    CAS  PubMed  Google Scholar 

  5. Akkurt I, Tekin HO (2020) Radiological parameters of bismuth oxide glasses using the Phy-X/PSD software. Emerg Mater Res 9(3):1020–1027

    Google Scholar 

  6. Henderson BE, Feigelson HS (2000) Hormonal carcinogenesis. Carcinogenesis 21(3):427–433

    CAS  PubMed  Google Scholar 

  7. Schneider R et al (2011) Aromatase inhibitors in the treatment of breast cancer in post-menopausal female patients: an update. Breast Cancer Targ Ther 3:113

    CAS  Google Scholar 

  8. Chumsri S et al (2011) Aromatase, aromatase inhibitors, and breast cancer. J Steroid Biochem Mol Biol 125(1–2):13–22

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Lamb HM, Adkins JC (1998) Letrozole. Drugs 56(6):1125–1140

    CAS  PubMed  Google Scholar 

  10. Drug bank Available from: https://go.drugbank.com/drugs/DB01006

  11. Panchagnula R, Thomas NS (2000) Biopharmaceutics and pharmacokinetics in drug research. Int J Pharm 201(2):131–150

    CAS  PubMed  Google Scholar 

  12. Boisseau P, Loubaton B (2011) Nanomedicine, nanotechnology in medicine. C R Phys 12(7):620–636

    CAS  Google Scholar 

  13. Lim E-K et al (2013) Delivery of cancer therapeutics using nanotechnology. Pharmaceutics 5(2):294–317

    CAS  PubMed  PubMed Central  Google Scholar 

  14. McAllister K et al (2002) Polymeric nanogels produced via inverse microemulsion polymerization as potential gene and antisense delivery agents. J Am Chem Soc 124(51):15198–15207

    CAS  PubMed  Google Scholar 

  15. Soni G, Yadav KS (2016) Nanogels as potential nanomedicine carrier for treatment of cancer: a mini review of the state of the art. Saudi Pharma J 24(2):133–139

    Google Scholar 

  16. Qin M et al (2014) Overcoming cancer multidrug resistance by codelivery of doxorubicin and verapamil with hydrogel nanoparticles. Macromol Biosci 14(8):1106–1115

    CAS  PubMed  Google Scholar 

  17. Peppas NA, Moynihan HJ, Lucht LM (1985) The structure of highly crosslinked poly (2-hydroxyethyl methacrylate) hydrogels. J Biomed Mater Res 19(4):397–411

    CAS  PubMed  Google Scholar 

  18. Sultana F et al (2013) An overview of nanogel drug delivery system. J Appl Pharm Sci 3(8):95–105

    Google Scholar 

  19. Khalid Q, Ahmad M, Usman Minhas M (2018) Hydroxypropyl-β-cyclodextrin hybrid nanogels as nano-drug delivery carriers to enhance the solubility of dexibuprofen: characterization, in vitro release, and acute oral toxicity studies. Adv Polym Technol 37(6):2171–2185

    CAS  Google Scholar 

  20. Khan KU, Akhtar N, Minhas MU (2020) Poloxamer-407-Co-Poly (2-Acrylamido-2-Methylpropane Sulfonic Acid) cross-linked nanogels for solubility enhancement of olanzapine: synthesis, characterization, and toxicity evaluation. AAPS PharmSciTech 21:1–15

    Google Scholar 

  21. Sohail M et al (2016) Development and in vitro evaluation of high molecular weight chitosan based polymeric composites for controlled delivery of valsartan. Adv Polym Technol 35(4):361–368

    CAS  Google Scholar 

  22. Khurana S, Bedi P, Jain N (2013) Preparation and evaluation of solid lipid nanoparticles based nanogel for dermal delivery of meloxicam. Chem Phys Lipid 175:65–72

    Google Scholar 

  23. Frömming K-H, Szejtli J (1993) Cyclodextrins in pharmacy, vol 5. Springer, Dordrecht

    Google Scholar 

  24. Loftsson T et al (2005) Cyclodextrins in drug delivery. Expert Opin Drug Deliv 2(2):335–351

    CAS  PubMed  Google Scholar 

  25. Jadhav K et al (2008) Formulation and evaluation of flurbiprofen microemulsion. Curr Drug Deliv 5(1):32–41

    PubMed  Google Scholar 

  26. Azandaryani AH, Kashanian S, Derakhshandeh K (2017) Folate conjugated hybrid nanocarrier for targeted letrozole delivery in breast cancer treatment. Pharm Res 34(12):2798–2808

    Google Scholar 

  27. Yassemi A, Kashanian S, Zhaleh H (2020) Folic acid receptor-targeted solid lipid nanoparticles to enhance cytotoxicity of letrozole through induction of caspase-3 dependent-apoptosis for breast cancer treatment. Pharm Dev Technol 25(4):397–407

    CAS  PubMed  Google Scholar 

  28. Bruschi ML (2015) Strategies to modify the drug release from pharmaceutical systems. Woodhead Publishing. Sawston

    Google Scholar 

  29. Sodeifian G, Sajadian SA (2018) Solubility measurement and preparation of nanoparticles of an anticancer drug (Letrozole) using rapid expansion of supercritical solutions with solid cosolvent (RESS-SC). J Supercrit Fluids 133:239–252

    CAS  Google Scholar 

  30. Maniyar M, Chakraborty A, Kokare C (2020) Formulation and evaluation of letrozole-loaded spray dried liposomes with PEs for topical application. J Liposome Res 30(3):274–284

    PubMed  Google Scholar 

  31. Kim MS et al (2007) Synthesis and characterization of in situ chitosan-based hydrogel via grafting of carboxyethyl acrylate. J Biomed Mater Res Part A Off J Soc Biomater Japanese Soc Biomater Australian Soc Biomater Korean Soc Biomater 83(3):674–682

    Google Scholar 

  32. Sudhakar K et al (2015) Temperature-responsive poly (N-vinylcaprolactam-co-hydroxyethyl methacrylate) nanogels for controlled release studies of curcumin. Des Monomers Polym 18(8):705–713

    CAS  Google Scholar 

  33. Ali L et al (2014) Controlled release of highly water-soluble antidepressant from hybrid copolymer poly vinyl alcohol hydrogels. Polym Bull 71(1):31–46

    CAS  Google Scholar 

  34. Ge X et al (2011) Inclusion complexation of chloropropham with β-cyclodextrin: Preparation, characterization and molecular modeling. Spectrochim Acta Part A Mol Biomol Spectrosc 81(1):397–403

    CAS  Google Scholar 

  35. Gomathi T et al (2017) Fabrication of letrozole formulation using chitosan nanoparticles through ionic gelation method. Int J Biol Macromol 104:1820–1832

    CAS  PubMed  Google Scholar 

  36. Hamishehkar H et al (2016) Histological assessment of follicular delivery of flutamide by solid lipid nanoparticles: potential tool for the treatment of androgenic alopecia. Drug Dev Ind Pharm 42(6):846–853

    CAS  PubMed  Google Scholar 

  37. Hashemipour S, Panahi HA (2017) Fabrication of magnetite nanoparticles modified with copper based metal organic framework for drug delivery system of letrozole. J Mol Liq 243:102–107

    CAS  Google Scholar 

  38. Hosseini MS, Hemmati K, Ghaemy M (2016) Synthesis of nanohydrogels based on tragacanth gum biopolymer and investigation of swelling and drug delivery. Int J Biol Macromol 82:806–815

    Google Scholar 

  39. Sang G et al (2018) A thermo/pH/magnetic-responsive nanogel based on sodium alginate by modifying magnetic graphene oxide: preparation, characterization, and drug delivery. Iran Polym J 27(3):137–144

    CAS  Google Scholar 

  40. Kazemi S, Sarabi AA, Abdouss M (2016) Synthesis and characterization of magnetic molecularly imprinted polymer nanoparticles for controlled release of letrozole. Korean J Chem Eng 33(11):3289–3297

    CAS  Google Scholar 

  41. Chemicalbook C Available from: https://www.chemicalbook.com/ChemicalProductProperty_US_CB9286355.aspx

  42. Shafi S (2011) Nanomedicine and use of nanotechnology in drug delivery systems: a novel approach. Int J Res Pharmaceut Biomed Sci 2(3):926–930

    Google Scholar 

  43. Mudalige T et al (2019) Characterization of Nanomaterials: Tools and Challenges. Nanomaterials for Food Applications. Elsevier, Netherlands, pp 313–353

    Google Scholar 

  44. Mahmood A et al (2016) β-CD based hydrogel microparticulate system to improve the solubility of acyclovir: optimization through in-vitro, in-vivo and toxicological evaluation. J Drug Deliv Sci Technol 36:75–88

    CAS  Google Scholar 

  45. Sarika P, James NR, Raj DK (2016) Preparation, characterization and biological evaluation of curcumin loaded alginate aldehyde–gelatin nanogels. Mater Sci Eng C 68:251–257

    Google Scholar 

  46. Tekin HO et al (2020) Nuclear radiation shielding competences of barium-reinforced borosilicate glasses. Emerg Mater Res 9(4):1131–1144

    Google Scholar 

  47. Bode C et al (2019) Often neglected: PLGA/PLA swelling orchestrates drug release: HME implants. J Control Release 306:97–107

    CAS  PubMed  Google Scholar 

  48. Suhail M et al (2019) Nanogels as drug-delivery systems: a comprehensive overview. Ther Deliv 10(11):697–717

    CAS  PubMed  Google Scholar 

  49. Jain S et al (2019) An overview of nanogel–novel drug delivery system. Asian J Pharm Res Dev 7(2):47–55

    Google Scholar 

  50. Ashrafizadeh M et al (2019) Synthesis and physicochemical properties of dual-responsive acrylic acid/butyl acrylate cross-linked nanogel systems. J Colloid Interface Sci 556:313–323

    CAS  PubMed  Google Scholar 

  51. Khan IU et al (2015) Microfluidic conceived pH sensitive core–shell particles for dual drug delivery. Int J Pharm 478(1):78–87

    CAS  PubMed  Google Scholar 

  52. Tomić SL et al (2007) Swelling and drug release behavior of poly (2-hydroxyethyl methacrylate/itaconic acid) copolymeric hydrogels obtained by gamma irradiation. Radiat Phys Chem 76(5):801–810

    Google Scholar 

  53. Kim Y et al (2011) Synthesis, characterization, and antibacterial applications of novel copolymeric silver nanocomposite hydrogels. Bull Korean Chem Soc 32(2):553

    CAS  Google Scholar 

  54. Chouhan R, Bajpai AK (2010) Release dynamics of ciprofloxacin from swellable nanocarriers of poly (2-hydroxyethyl methacrylate): an in vitro study. Nanomedicine: nanotechnology. Biol Med 6(3):453–462

    CAS  Google Scholar 

  55. Daoud-Mahammed S et al (2009) Cyclodextrin and polysaccharide-based nanogels: entrapment of two hydrophobic molecules, benzophenone and tamoxifen. Biomacromol 10(3):547–554

    CAS  Google Scholar 

  56. Del Valle EM (2004) Cyclodextrins and their uses: a review. Process Biochem 39(9):1033–1046

    Google Scholar 

  57. Blagden N et al (2007) Crystal engineering of active pharmaceutical ingredients to improve solubility and dissolution rates. Adv Drug Deliv Rev 59(7):617–630

    CAS  PubMed  Google Scholar 

  58. Li N et al (2011) Novel nanogels as drug delivery systems for poorly soluble anticancer drugs. Colloids Surf B 83(2):237–244

    CAS  Google Scholar 

  59. Amoli-Diva M, Daghighi Asli M, Karimi S (2017) FeMn2O4 nanoparticles coated dual responsive temperature and pH-responsive polymer as a magnetic nano-carrier for controlled delivery of letrozole anti-cancer. Nanomed J 4(4):218–223

    CAS  Google Scholar 

  60. Dash S et al (2010) Kinetic modeling on drug release from controlled drug delivery systems. Acta Pol Pharm 67(3):217–223

    CAS  PubMed  Google Scholar 

  61. Bruschi ML (2015) Strategies to modify the drug release from pharmaceutical systems. Woodhead Publishing, Sawston

    Google Scholar 

  62. Lobigs LM et al (2017) The use of biomarkers to describe plasma-, red cell-, and blood volume from a simple blood test. Am J Hematol 92(1):62–67

    CAS  PubMed  Google Scholar 

  63. Gong C et al (2012) Efficient inhibition of colorectal peritoneal carcinomatosis by drug loaded micelles in thermosensitive hydrogel composites. Nanoscale 4(10):3095–3104

    CAS  PubMed  Google Scholar 

  64. Pokharkar V et al (2009) Acute and subacute toxicity studies of chitosan reduced gold nanoparticles: a novel carrier for therapeutic agents. J Biomed Nanotechnol 5(3):233–239

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ikrima Khalid.

Ethics declarations

Conflict of Interest

Authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmad, W., Khalid, I., Barkat, K. et al. Development and evaluation of polymeric nanogels to enhance solubility of letrozole. Polym. Bull. 80, 4085–4116 (2023). https://doi.org/10.1007/s00289-022-04248-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-022-04248-5

Keywords

Navigation