Skip to main content
Log in

Carboxy-functionalized polyimide aerogel monoliths: synthesis, characterization and carbon dioxide adsorption

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Conventional organic microporous materials have high CO2 adsorption performance, however, their synthesis process is is quite complex and difficult to achieve industrial applications. In this study, carboxy functionalized polyimide aerogels were successfully synthesized by polycondensation reactions at room temperature. This material is not only simple, but also suitable for industrial production applications. The experimental results indicate that the aerogel is classified as a mesoporous material. The onset decomposition temperature of polyimide aerogels is above 440 °C. This implies that polyimide aerogels have excellent thermal stability. Among them, the largest specific surface area is 250.91 m2/g and has considerable CO2 adsorption properties. The maximum adsorption capacity of CO2 is 17.1 cm3/g for BDPI-5 at 273 K and 1 bar, which is comparable to those of previously reported porous organic polymers. The mild and convenient synthesis method and high CO2 adsorption capacity indicate that the polyimide aerogel with carboxyl is suitable as a good candidate material for CO2 adsorption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig 5
Fig 6
Fig 7

Similar content being viewed by others

References

  1. Berjan S, Vaško Ž, Hassen TB, El Bilali H, Allahyari MS, Tomić V, Radosavac A (2022) Assessment of household food waste management during the COVID-19 pandemic in Serbia: a cross-sectional online survey. Environ Sci Pollut Res 29:11130–11141

    CAS  Google Scholar 

  2. Khatri M, Hussain N, El-Ghazali S, Yamamoto T, Kobayashi S, Khatri Z, Ahmed F, Kim IS (2020) Ultrasonic-assisted dyeing of silk fibroin nanofibers: an energy-efficient coloration at room temperature. Appl Nanosci 10:917–930

    CAS  Google Scholar 

  3. Araújo NS, Souza NF, Marcos J, de Lima-Faria A, Paz TS, Scalize PS, Teixeira SM, de Sabóia-Morais H, Junior CR, da Conceição EC (2022) Treatment of cosmetic industry wastewater by flotation with Moringa oleifera Lam, and aluminum sulfate and toxicity assessment of the treated wastewater. Environ Sci Pollut Res 29:1199–1209

    Google Scholar 

  4. Cristóvão MB, Bento-Silva A, Bronze MR, Crespo JG, Pereira VJ (2021) Detection of anticancer drugs in wastewater effluents: grab versus passive sampling. Sci Total Environ 786:147477–147485

    PubMed  Google Scholar 

  5. Hongru Y, Laijun Z, Ying Q, Lixin Z, Pingle Y (2022) How to achieve synergy between carbon dioxide mitigation and air pollution control? Evidence from China. Sustain Cities Soc 78:103609–103621

    Google Scholar 

  6. Linxia W, Yali D, Jiayan Z, Feifei T, Jingjing X (2022) Construction of NiO/g–C3N4 p-n heterojunctions for enhanced photocatalytic CO2 reduction. J Sol State Chem 308:122878–122888

    Google Scholar 

  7. Reddy MSB, Ponnamma D, Sadasivuni KK, Kumar B, Abdullah AM (2021) Carbon dioxide adsorption based on porous materials. RSC Advances 11(21):12658–12681

    Google Scholar 

  8. Wankai A, Shijia Z, Huixing Z, Tiantian S, Herui W, Xiaojing X, Qiu J, Yuchen Q, Yunlai R, Song J, Cuilian X, MaoSong H, Zhenliang P (2021) s-Tetrazine-functionalized hyper-crosslinked polymers for efficient photocatalytic synthesis of benzimidazoles. Green Chem 23:1292–1299

    Google Scholar 

  9. Ramirez-Vidal P, Suárez-García F, Canevesi RLS, Castro-Muñiz A, Gadonneix P, Paredes JI, Celzard A, Fierro V (2022) Irreversible deformation of hyper-crosslinked polymers after hydrogen adsorption. J Colloid Interface Sci 605:513–527

    CAS  PubMed  Google Scholar 

  10. You W, Yiwen C, Junjiang Z, Zhe S, Qin X, Xiaomei W, Fa Z, Jianhan H (2022) Acetamido-functionalized hyper-crosslinked polymers for efficient removal of phenol in aqueous solution. Sep Purif Technol 287:120566–120572

    Google Scholar 

  11. Yang C, Xiangyu W, Yuwei W, Haoran S, Zhuo L, Yingna C, Changping L (2021) Preparation of hyper-crosslinked polymers with hierarchical porous structure from hyperbranched polymers for adsorption of naphthalene and 1-naphthylamine. Sep Purif Technol 266:118542–118550

    Google Scholar 

  12. Zhai T, Ambrose K, Nyayachavadi A, Walter KG, Rondeau-Gagné S, Feldblyum JI (2022) Ferrocene metallopolymers of intrinsic microporosity (MPIMs). Chem Commun 58(2):238–241

    CAS  Google Scholar 

  13. Felemban SA, Grazia Bezzu C, Comesa˜na-Gándara B, Jansen JC, Fuoco A, Esposito E, Carta M, McKeown NB (2021) Synthesis and gas permeation properties of tetraoxidethianthrene-based polymers of intrinsic microporosity. J Mater Chem A 9:2840–2849

    CAS  Google Scholar 

  14. McCallum NC, Son FA, Clemons TD, Weigand SJ, Gnanasekaran K, Battistella C, Barnes BE, Abeyratne-Perera H, Siwicka ZE, Forman CJ, Zhou X, Moore MH, Savin DA, Stupp SI, Wang Z, Vora GJ, Johnson BJ, Farha OK, Gianneschi NC (2021) Allomelanin: a biopolymer of intrinsic microporosity. J Am Chem Soc 143:4005–4016

    CAS  PubMed  Google Scholar 

  15. Yang B, Wilbraham L, Hui G, Clowes R, Haofan Y, Zwijnenburg MA, Cooper AI (2021) Photocatalytic polymers of intrinsic microporosity for hydrogen production from water. J Mater Chem A 9:19958–19964

    Google Scholar 

  16. Ouyang Z, Tranca D, Yazhen Z, Zhenying C, Xiaobin F, Jinhui Z, Guangqun Z, Changchun K, Kymakis E, Xiaodong Z (2021) Quinone-enriched conjugated microporous Polymer as an organic cathode for Li-Ion batteries. ACS Appl Mater Interfaces 13:9064–9073

    CAS  PubMed  Google Scholar 

  17. Bhanja P, Sharma SK, Chongdar S, Paul B, Bhaumik A (2021) Bifunctional crystalline microporous organic polymers: efficient heterogeneous catalysts for the synthesis of 5-hydroxymethylfurfural. Mol Catal 515:111877–211186

    CAS  Google Scholar 

  18. Khakbaz M, Ghaemi A, Sadeghi GMM (2021) Synthesis methods of microporous organic polymeric adsorbents: a review. Polym Chem 12:6962–6997

    CAS  Google Scholar 

  19. Tingting Z, Qi Y, Lei D, Di T, Tiansheng Z, Tiesheng L, Lei L (2019) Atom-economical preparation of polybismaleimide-based microporous organic polymers. Green Chem 21:2326–2333

    Google Scholar 

  20. Weiwang C, Sha L, Yueyan S, Xiaomeng Z, Fenglei Z (2022) Melamine-crosslinked polyimide aerogels from supercritical ethanol drying with improved in-use shape stability against shrinking. Macromol Mater Eng 307:2100645–2100652

    Google Scholar 

  21. Guiyang L, Zhonggang W (2013) Microporous polyimides with uniform pores for adsorption and separation of CO2 gas and organic vapors. Macromolecules 46(8):3058–3066

    Google Scholar 

  22. Shiya Q, Shuai K, Zuming H, Junrong Y, Yan W, Jing Z (2020) Moisture resistance, mechanical and thermal properties of polyimide aerogels. J Porous Mater 27:237–247

    Google Scholar 

  23. Kawagishi K, Saito H, Furukawa H, Horie K (2007) Superior nanoporous polyimides via supercritical CO2 drying of jungle-gym-type polyimide gels. Macromol Rapid Commun 28:96–100

    CAS  Google Scholar 

  24. Nguyen BN, Scheiman DA, Mary AB, Meador JG, Hamilton B, McCorkle LS (2021) Effect of urea links in the backbone of polyimide aerogels. ACS Appl Polym Mater 3(4):2027–2037

    CAS  Google Scholar 

  25. Mengyun L, Yixing W, Jianqi J, Xinhao C, Qiang X, Xiangyang L, Jiaqiang Q (2020) A facile method to fabricate the polyimide aerogels with controllable microstructure by freeze-drying. Mater Lett 267:127558

    Google Scholar 

  26. Viggiano RP, Williams JC, Schiraldi DA, Meador MAB (2017) Effect of bulky substituents in the polymer backbone on the properties of polyimide aerogels. ACS Appl Mater Interfaces 9(9):8287–8296

    CAS  PubMed  Google Scholar 

  27. Dengxiong S, Jingang L, Haixia Y, Shiyong Y (2013) Intrinsically highly hydrophobic semi-alicyclicfluorinated polyimide aerogel with ultralow dielectric constants. Chem Lett 42(10):1230–1232

    Google Scholar 

  28. Dengxiong S, Jingang L, Haixia Y, Shiyong Y (2013) Highly thermally resistantand flexible polyimide aerogels containing rigid-rod biphenylbenzimidazole and triphenylpyridine moieties: synthesis and characterization. Chem Lett 42(12):1545–1547

    Google Scholar 

  29. Kawagishi K, Saito H, Furukawa H, Horie K (2007) superior nanoporous polyimides via supercritical CO2 drying of jungle-gym-type polyimide gels. Macromol Rapid Commun 28:96–100

    CAS  Google Scholar 

  30. Nguyen BN, Mary AB, Meador DS, McCorkle L (2017) Polyimide aerogels using triisocyanate as cross-linker. ACS Appl Mater Interfaces 9:27313–27321

    CAS  PubMed  Google Scholar 

  31. Ying C, Gaofeng S, Yong K, Xiaodong S, Sheng C (2017) Facile preparation of cross-linked polyimide aerogels with carboxylic functionalization for CO2 capture. Chem Eng J 322:1–9

    Google Scholar 

  32. Yixing W, Taijun H, Mengyun L, Jianqi J, Yu D, Yang L, Longbo L, Xiangyang L, Jiaqiang Q (2019) Fast and efficient oil-water separation under harsh conditions of the flexible polyimide aerogel containing benzimidazole structure. Colloids Surf A 581(20):123809–123819

    Google Scholar 

  33. Mary AB, Meador MA, McCorkle L, Vivod SL, Wilmoth N (2016) Moisture-resistant polyimide aerogels containing propylene oxide links in the backbone. ACS Appl Mater Interfaces 8(42):29073–29079

    Google Scholar 

  34. Guo H, Meador MAB, Cashman JL (2020) Flexible polyimide aerogels with dodecane links in the backbone structure. ACS Appl Mater Interfaces 12(29):33288–33296

    CAS  PubMed  Google Scholar 

  35. Cashman JL, Nguyen BN, Dosa B, Meador MAB (2020) Flexible polyimide aerogels derived from the use of a neopentyl spacer in the backbone. ACS Applied Polymer Materials 2(6):2179–2189

    CAS  Google Scholar 

  36. Pantoja M, Boynton N, Cavicchi KA, Dosa B, Cashman JL, Meador MAB (2019) Increased flexibility in polyimide aerogels using aliphatic spacers in the polymer backbone. ACS Appl Mater Interfaces 11(9):9425–9437

    CAS  PubMed  Google Scholar 

  37. Dawson R, Adams DJ, Cooper AI (2011) Chemical tuning of CO2 sorption in robust nanoporous organic polymers. Chem Sci 2(6):1173–1177

    CAS  Google Scholar 

  38. Zhenggong W, Dong W, Feng Z, Jian J (2014) Tröger’s base-based microporous polyimide membranes for high performance gas separation. ACS Macro Lett 3(7):597–601

    Google Scholar 

  39. Mary AB, Meador CR, Aleman KH, Ramirez N, Vivod SL, Wilmoth N, McCorkle L (2015) Polyimide aerogels with amide cross-Links: a low cost alternative for mechanically strong polymer aerogels. ACS Appl Mater Interfaces 7(2):1240–1249

    Google Scholar 

  40. Haiquan G, Mary AB, Meador LM, Quade DJ, Guo J, Hamilton B, Cakmak M (2012) Tailoring properties of cross-linked polyimide aerogels for better moisture resistance, flexibility, and strength. ACS Appl Mater Interfaces 4(10):5422–5429

    Google Scholar 

  41. Chunhao Z, Jana SC (2017) Tuning porous networks in polyimide aerogels for airborne nanoparticle filtration. ACS Appl Mater Interfaces 9(35):30074–30082

    Google Scholar 

  42. Liebl MR, Senker J (2013) microporous functionalized triazine-based polyimides with high CO2 capture capacity. Chem Mater 25(6):970–980

    CAS  Google Scholar 

  43. Klumpen C, Breunig M, Homburg T, Stock N, Senker J (2016) Microporous organic polyimides for CO2 and H2O capture and separation from CH4 and N2 mixtures-interplay between porosity and chemical function. Chem Mater 28(15):5461–5470

    CAS  Google Scholar 

  44. Xueliang P, Wentao Z, Wenge Z (2014) Preparation and characterization of highly cross-linked polyimide aerogels based on polyimide containing trimethoxysilane side groups. Langmuir 30(44):13375–13383

    Google Scholar 

  45. Mary AB, Meador EJ, Malow RS, Wright S, Quade D, Vivod SL, Guo H, Guo J, Cakmak M (2012) Mechanically strong, flexible polyimide aerogels cross-linked with aromatic triamine. ACS Appl Mater Interfaces 4(2):536–544

    Google Scholar 

  46. Haiquan G, Mary AB, Meador LS, McCorkle DA, Scheiman JD, McCrone BW (2016) Poly(maleic anhydride) cross-linked polyimide aerogels: synthesis and properties. RSC Adv 6(31):26055–26065

    Google Scholar 

  47. Jiao Y, Meiling F, Fangfang Z, Yusu X, Haolin T, Chi H, Haining Z (2017) Amine-functionalized poly(ionic liquid) brushes for carbon dioxide adsorption. Chem Eng J 316:903–910

    Google Scholar 

  48. Yali L, Buyi L, Liyun L, Bien T (2011) Synthesis of cost-effective porous polyimides and their gas storage properties. Chem Commun 47(27):7704–7706

    Google Scholar 

  49. Farha OK, Bae Y-S, Hauser BG, Spokoyny AM, Snurr RQ, Mirkin CA, Hupp JT (2010) Chemical reduction of a diimide based porous polymer for selective uptake of carbon dioxide versus methane. Chem Commun 46(7):1056–1058

    CAS  Google Scholar 

  50. Laybourn A, Dawson R, Clowes R, Iggo JA, Cooper AI, Khimyak YZ, Adams DJ (2012) Branching out with aminals: microporous organic polymers from difunctional monomers. Polym Chem 3(2):533–537

    CAS  Google Scholar 

  51. Teng B, Cuiying P, Daliang Z, Jun X, Feng D, Xiaofei J, Qiu S (2011) Gas storage in porous aromatic frameworks (PAFs). Energy Environ Sci 4(10):3991–3999

    Google Scholar 

  52. Hao Y, Changjiang S, Mengzhe T, Jing Q, Zhonggang W (2012) Microporous cyanate resins: synthesis, porous structure, and correlations with gas and vapor adsorptions. Macromolecules 45(12):5140–5150

    Google Scholar 

  53. Dawson R, Stockel Ev, Holst JR, Adams DJ, Cooper AI (2011) Microporous organic polymers for carbon dioxide capture. Energy Environ Sci 4(10):4239–4245

    CAS  Google Scholar 

  54. Kaixiang S, Hongyan Y, Yongcun Z, Yanfeng W, Ningning S, Shuai Z, Ye T, Shiyang Z, Bo Z, Shaowei G (2019) Crosslinked porphyrin-based polyimides: tunable porosity parameters and carbon dioxide adsorption. Microporous Mesoporous Mater 287:246–253

    Google Scholar 

  55. Wilke A, Yuan J, Antonietti M, Weber J (2012) Enhanced carbon dioxide adsorption by a mesoporous poly(ionicliquid). ACS Macro Lett 1(8):1028–1031

    CAS  PubMed  Google Scholar 

  56. Venkata S, Pavan K, Neti JW, Shuguang D, Echegoyen L (2015) Synthesis of a polyimide porous porphyrin polymer for selective CO2 capture. J Chem 2015:1–7

    Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Key Research and Development Program of China (Grant No. 2017YFB0307101).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hongwei Ma or Yang Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, Y., Dong, C., Zhang, F. et al. Carboxy-functionalized polyimide aerogel monoliths: synthesis, characterization and carbon dioxide adsorption. Polym. Bull. 80, 4429–4442 (2023). https://doi.org/10.1007/s00289-022-04242-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-022-04242-x

Keywords

Navigation