Skip to main content

Advertisement

Log in

A new methacrylate polymer functionalized with fluoroarylketone prepared by hydrothermal method and its nanocomposites with SiO2: thermal, dielectric, and biocidal properties

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Nanocomposites containing newly synthesized methacrylate polymer, poly 2-(4-fluorophenyl)-2-oxoethyl-2-methylprop-2-enoate (PFPAMA), and SiO2 nanoparticles in different mass ratios (1, 3, 5, and 7 wt%) were synthesized using the hydrothermal method. The morphological and structural properties of the materials have been examined by SEM, FTIR, TGA, and XRD techniques. The activation energies (Ea) related to thermal decomposition of the nanocomposites were estimated by the Flynn–Wall–Ozawa (FWO) and Kissinger–Akahira–Sunose (KAS) methods using non-isothermal TGA experiments. The thermal stability, glass transition temperature (Tg), and thermal decomposition activation energy (Ea) values of nanocomposites were increased by increasing the SiO2 amount on the composite. The dielectric constant (ε′), dielectric loss factor (ε′′), and ac conductivity of neat PFPAMA and PFPAMA/SiO2 nanocomposites were also measured for the frequency range of 100 Hz to 2 kHz at different temperatures (from 25 to 120 °C). It was seen that the frequency dependence of the dielectric constant and dielectric loss factor decreased with increasing frequency. The biological activities of PFPAMA/SiO2 nanocomposites against gram-positive (S. aureus) and gram-negative (E. coli) bacteria were also tested. The antibacterial effect increased against both bacterial species as the amount of SiO2 in the nanocomposites increased.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Scheme 3
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Mishra RS, Mishra AK, Raju KVSN (2009) Synthesis and property study of UV-curable hyperbranched polyurethane acrylate/ZnO hybrid coatings. Eur Polym J 45(3):960–966. https://doi.org/10.1016/j.eurpolymj.2008.11.0

    Article  CAS  Google Scholar 

  2. Zandi-zand R, Ershad-langroudi A, Rahimi A (2005) Silica based organic–inorganic hybrid nanocomposite coatings for corrosion protection. Prog Org Coat 53:286–291. https://doi.org/10.1016/j.porgcoat.2005.03.00

    Article  CAS  Google Scholar 

  3. Soykan C, Erol I, Kirbag S (2003) Synthesis and characterization of poly(1,3-thiazol-2-yl-carbomoyl) methyl methacrylate: its metal complexes and antimicrobial activity studies. J App Polym Sci 90(12):3244–3251. https://doi.org/10.1002/app.12981

    Article  CAS  Google Scholar 

  4. Ma J, Mo MS, Du XS et al (2008) Effect of inorganic nanoparticles on mechanical property, fracture toughness and toughening mechanism of two epoxy systems. Polymer 49:3510–3523. https://doi.org/10.1016/j.polymer.2008.05.043

    Article  CAS  Google Scholar 

  5. Chen C, Justice RS, Schaefer DW, Baur JW (2008) Highly dispersed nanosilica–epoxy resins with enhanced mechanical properties. Polymer 49(17):3805–3815. https://doi.org/10.1016/j.polymer.2008.06.023

    Article  CAS  Google Scholar 

  6. Zhang H, Zhang Z, Friedrich K, Eger C (2006) Property improvements of in situ epoxy nanocomposites with reduced interparticle distance at high nanosilica content. Acta Mater 54:1833–1842. https://doi.org/10.1016/j.actamat.2005.12.009

    Article  CAS  Google Scholar 

  7. Wu T, Ke Y (2006) The absorption and thermal behaviors of PET–SiO2 nanocomposite films. Polym Deg Stab 91(9):2205–2212. https://doi.org/10.1016/j.polymdegradstab.200

    Article  CAS  Google Scholar 

  8. Nayak RK, Dash A, Ray BC (2014) Effect of epoxy modifiers (Al2O3/SiO2/TiO2) on mechanical performance of epoxy/glass fiber hybrid composites. Proc Mat Sci 6:1359–1364. https://doi.org/10.1016/j.mspro.2014.07.115

    Article  CAS  Google Scholar 

  9. Jalili MM, Maradian S, Dastmalchian H, Karbasi A (2007) Investigating the variations in properties of 2-pack polyurethane clear coat through separate incorporation of hydrophilic and hydrophobic nanosilica. Prog Org Coat 59:81–87. https://doi.org/10.1016/j.porgcoat.2007.01.01

    Article  CAS  Google Scholar 

  10. Dongbo W, Yujie F, Liwei H, Yan T (2006) Effect of wet surface treated nano-SiO2 on mechanical properties of polypropylene composite. J Wuhan Univ of Technol Mater Sci Edu 23(3):354–357. https://doi.org/10.1007/s11595-007-3354-9

    Article  CAS  Google Scholar 

  11. Lee NY (2013) Spatially defined hydrophobic coating of a microwell-patterned hydrophilic polymer substrate for targeted adhesion with high-resolution soft lithography. Colloids Surf B 111:313–320. https://doi.org/10.1016/j.colsurfb.2013.06.027

    Article  CAS  Google Scholar 

  12. Erol I, Soykan C, Ahmedzade M (2002) Monomer reactivity ratios of the 2-(3-mesityl-3-methylcyclobutyl)-2-hydroxyethyl methacrylate and styrene system from 1H-NMR. J Polym Sci Part A Polym Chem 40:1756–1763. https://doi.org/10.1002/pola.10255

    Article  CAS  Google Scholar 

  13. Adachi Y, Ooyama Y, Shibayama N et al (2016) Synthesis of organic photosensitizers containing dithienogermole and thiadiazolo[3,4-c]pyridine units for dye-sensitized solar cells. Dalton Trans 45:13817–13826. https://doi.org/10.1039/C6DT02469F

    Article  CAS  PubMed  Google Scholar 

  14. Jankova K, Hvilsted S (2005) Novel fluorinated block copolymer architectures fuelled by atom transfer radical polymerization. J Fluor Chem 26:241–250. https://doi.org/10.1016/j.jfluchem.2004.11.00

    Article  Google Scholar 

  15. Erol I, Sahin B (2015) Functional styrenic copolymer based on 2-(dimethylamino)ethyl methacrylate: reactivity ratios, biological activity thermal properties and semi-conducting properties. J Fluor Chem 178:154–164. https://doi.org/10.1016/j.jfluchem.2015.07.00

    Article  CAS  Google Scholar 

  16. Wang C, Wang AW, Feng J et al (2017) Hydrothermal preparation of hierarchical MoS2-reduced graphene oxide nanocomposites towards remarkable enhanced visible-light photocatalytic activity. Ceram Int 43:2384–2388. https://doi.org/10.1016/j.ceramint.2016.11.02

    Article  CAS  Google Scholar 

  17. Saba N, Tahir PM, Jawaid M (2014) A review on potentiality of nano filler/natural fiber filled polymer hybrid composites. Polymers 6:2247–2273. https://doi.org/10.3390/polym6082247

    Article  CAS  Google Scholar 

  18. Peng J, Gao W, Gupta BK et al (2012) Graphene quantum dots derived from carbon fibers. Nano Lett 12:844–849. https://doi.org/10.1021/nl2038979

    Article  CAS  PubMed  Google Scholar 

  19. Hou X, Yao S, Wang Z, Fang C, Li T (2021) Enhancement of the mechanical properties of polylactic acid/basalt fiber composites via in-situ assembling silica nanospheres on the interface. J Mater Sci Technol 84:182–190. https://doi.org/10.1016/j.jmst.2021.02.001

    Article  CAS  Google Scholar 

  20. Zheng J, Zhu R, He Z et al (2010) Synthesis and characterization of PMMA/SiO2 nanocomposites by in situ suspension polymerization. J App Polym Sci 115(4):1975–1981. https://doi.org/10.1002/app.31258

    Article  CAS  Google Scholar 

  21. Boulerba D, Zoukel A (2021) Poly(methyl methacrylate)/SiO2 nanocomposites: effects of the molecular interaction strength on thermal properties. Polym Polym Compos 29:S49–S56. https://doi.org/10.1177/0967391120985710

    Article  CAS  Google Scholar 

  22. Zhu A, Shi Z, Cai A, Zhao F, Liao T (2008) Synthesis of core–shell PMMA–SiO2 nanoparticles with suspension–dispersion–polymerization in an aqueous system and its effect on mechanical properties of PVC composites. Polym Test 27(5):540–547. https://doi.org/10.1016/j.polymertesting.2007

    Article  CAS  Google Scholar 

  23. Singh A, Kulkarni SK, Khan-Malek C (2011) Patterning of SiO2 nanoparticle–PMMA polymer composite microstructures based on soft lithographic techniques. Microelectron Eng 88(6):939–944. https://doi.org/10.1016/j.mee.2010.12.026

    Article  CAS  Google Scholar 

  24. Özdemir E, Soykan C, Coşkun M, Ahmedov MA (1997) Synthesis of phenacylmethacrylate: its characterization and polymerization. J Macromol Sci Part A 34(3):551–557. https://doi.org/10.1080/10601329708014982

    Article  Google Scholar 

  25. Coskun M, Soykan C, Ahmedzade M, Demirelli K (2001) Preparation and thermal degradation of poly(p-substituted phenacyl methacrylates). Polym Deg Stab 72:69–74. https://doi.org/10.1016/s0141-3910(00)00202-0

    Article  CAS  Google Scholar 

  26. Burunkaya E, Kesmez Ö, Kiraz N et al (2010) Sn4+ or Ce3+ doped TiO2 photocatalytic nanometric films on antireflective nano-SiO2 coated glass. Mater Chem Phys 120(2–3):272–276. https://doi.org/10.1016/j.matchemphys.2009.11

    Article  CAS  Google Scholar 

  27. Bajpai N, Tiwari A, Khan SA et al (2013) Effects of rare earth ions (Tb, Ce, Eu, Dy) on the thermoluminescence characteristics of sol-gel derived and γ-irradiated SiO2 nanoparticles. Luminescence 29(6):669–673. https://doi.org/10.1002/bio.2604

    Article  CAS  PubMed  Google Scholar 

  28. Zhu A, Shi Z, Cai A et al (2008) Synthesis of core–shell PMMA–SiO2 nanoparticles with suspension–dispersion–polymerization in an aqueous system and its effect on mechanical properties of PVC composites. Polym Test 27(5):540–547. https://doi.org/10.1016/j.polymertesting.2007

    Article  CAS  Google Scholar 

  29. Aldosari M, Othman AE (2013) Synthesis and characterization of the in situ bulk polymerization of PMMA containing graphene sheets using microwave irradiation. Molecules 18:3152–3167. https://doi.org/10.3390/molecules18033152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Hradil J, Horak D (2005) Characterization of pore structure of PHEMA-based slabs. React Funct Polym 62:1–9. https://doi.org/10.1016/j.reactfunctpolym.200

    Article  CAS  Google Scholar 

  31. Hu YH, Chen CY, Wang CC (2004) Viscoelastic properties and thermal degradation kinetics of silica/PMMA nanocomposites. Polym Degrad Stab 84(3):545–553. https://doi.org/10.1016/j.polymdegradstab.200

    Article  CAS  Google Scholar 

  32. Flynn JH, Wall LA (1966) A quick, direct method for the determination of activation energy from thermogravimetric data. J Polym Sci Part B Polym Lett 4(5):323–328. https://doi.org/10.1002/pol.1966.110040504

    Article  CAS  Google Scholar 

  33. Kissinger HE (1957) Reaction kinetics in differential thermal analysis. Anal Chem 29(11):1702–1706. https://doi.org/10.1021/ac60131a045

    Article  CAS  Google Scholar 

  34. Avakian P, Starkweather HW Jr, Kampert WG (2002) Dielectric analysis of polymers. In: Cheng SZD (ed) Handbook of thermal analysis and calorimetry. Elsevier, New York, pp 147–164

    Google Scholar 

  35. Mohomed K, Gerasimov TG, Moussy F, Harmon JP (2005) A broad spectrum analysis of the dielectric properties of poly(2-hydroxyethyl methacrylate). Polymer 46:3847–3855. https://doi.org/10.1016/j.polymer.2005.02.100

    Article  CAS  Google Scholar 

  36. Ramesh S, Yahana AH, Aroof AK (2002) Dielectric behaviour of PVC-based polymer electrolytes. Solid State Ion 291:152–153. https://doi.org/10.1016/s0167-2738(02)00311-9

    Article  Google Scholar 

  37. Bhargav PB, Sarada BA, Sharma AK, Rao VN (2010) Electrical conduction and dielectric relaxation phenomena of PVA based polymer electrolyte films. J Macromol Sci Part A Pure Appl Chem 47(131):137

    Google Scholar 

  38. Yakuphanoglu F, Erol I (2004) A novel organic semiconducting material: 2-(3-mesityl-3-methylcyclobutyl)-2-keto-ethyl methacrylate (MCKEMA). Physica B-condends Matter 352:378–382. https://doi.org/10.1016/j.physb.2004.08.018

    Article  CAS  Google Scholar 

  39. Slowing II, Vivero-Escoto JL, Wu CW, Lin VSY (2008) Mesoporous silica nanoparticles as controlled release drug delivery and gene transfection carriers. Adv Drug Delivery Rev 60:1278–1288. https://doi.org/10.1016/j.addr.2008.03.012

    Article  CAS  Google Scholar 

  40. Saliani M, Jalal J, Kafshdare EG (2015) Effects of pH and temperature on antibacterial activity of zinc oxide nano fluid against Escherichia coli O157: H7 and Staphylococcus aureus. Jundishapur J Microbiol 8(2):e17115. https://doi.org/10.5812/jjm.17115

    Article  PubMed  PubMed Central  Google Scholar 

  41. Jin SE, Jin HE (2021) Antimicrobial activity of zinc oxide nano/microparticles and their combinations against pathogenic microorganisms for biomedical applications: from physicochemical characteristics to pharmacological aspects. Nanomaterials 11(2):263. https://doi.org/10.3390/nano11020263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Karaman DS, Manner S, Rosenholm JM (2018) Mesoporous silica nanoparticles as diagnostic and therapeutic tools: how can they combat bacterial infection? Ther Deliv 9:241–244. https://doi.org/10.4155/tde-2017-0111

    Article  CAS  PubMed  Google Scholar 

  43. Martínez-Carmona M, Gun’ko YK, Vallet-Regí M (2018) Mesoporous silica materials as drug delivery: “the nightmare” of bacterial infection. Pharmaceutics 10(4):279. https://doi.org/10.3390/pharmaceutics10040279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Bernardos A, Piacenza E, Sancenón F et al (2019) Mesoporous silica-based materials with bactericidal properties. Small 15:1900669. https://doi.org/10.1002/smll.201900669

    Article  CAS  Google Scholar 

  45. Sefidan AM (2018) Novel silicon dioxide -based nanocomposites as an antimicrobial in poly (lactic acid) nanocomposites films. Nanomed Res J 3(2):65–70. https://doi.org/10.22034/NMRJ.2018.02.002

    Article  CAS  Google Scholar 

  46. Kadhum SA (2017) The Effect of two types of nano-particles (ZnO and SiO2) on different types of bacterial growth. Biomed Pharmacol J 10(4):1701–1708. https://doi.org/10.13005/bpj/1282

    Article  Google Scholar 

  47. Manoukian OS, Sardashti N, Stedman T, Gailiunas K et al (2018) Biomaterials for tissue engineering and regenerative medicine. Ref Mod Biomed Sci. https://doi.org/10.1016/b978-0-12-801238-3.64098-9

    Article  Google Scholar 

  48. Ivanova IA, Tasheva-Terzieva E, Angelov O et al (2012) Effect of ZnO thin films on survival of pseudomonas cells. J Nanomed Nanotechol 3(7):2–7. https://doi.org/10.4172/2157-7439.1000148

    Article  CAS  Google Scholar 

  49. Li M, Pokhrel S, Jin X, Mädler L, Damoiseaux R (2011) Stability, bioavailability, and bacterial toxicity of ZnO and iron-doped ZnO nano particles in aquatic media. Environ Sci Technol 45:755–761. https://doi.org/10.1021/es102266g

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study has been supported by the Afyon Kocatepe University Scientific Research Projects Coordination Unit. The Project Number is 21-FENED-25.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ibrahim Erol.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Erol, I., Gürler, Z. A new methacrylate polymer functionalized with fluoroarylketone prepared by hydrothermal method and its nanocomposites with SiO2: thermal, dielectric, and biocidal properties. Polym. Bull. 80, 2729–2752 (2023). https://doi.org/10.1007/s00289-022-04195-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-022-04195-1

Keywords

Navigation