Skip to main content
Log in

Ibuprofen nanoparticles-loaded sodium alginate/psyllium seed mucilage beads: evaluation the effect of different parameters on release and swelling rate

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Drug delivery systems (DDS) using polymer carriers have been received considerable attention due to their very small diameter, slow drug release, loading high doses of drugs, and preventing drug degradation. In this study, ibuprofen nanoparticles (Ibp NPs) with a particle size of less than 50 nm were synthesized and loaded into sodium alginate/psyllium seed mucilage (SA/PSM) carriers for a controlled drug release. FTIR results confirmed the presence of PSM and Ibp NPs in the SA beads. Furthermore, SEM images showed the formation of beads with porous and interconnected structures. Swelling and release were investigated by changing the pH of the medium; accordingly, the lowest swelling and release of Ibp NPs were obtained in the acidic medium due to the hydrogen bonding between carboxylic groups in the SA. Furthermore, it was found that drug release from SA beads was Fickian diffusion mechanism type, while by adding of PSM to the SA with 1.0:0.5 and 2.0:0.5 ratio, release type was anomalous transport and case-II transport, respectively. Overall, we presented SA/PSM beads as a carrier for a controlled release of Ibp NPs, which might be interesting for biomedical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Shen S, Wu Y, Liu Y, Wu D (2017) High drug-loading nanomedicines: progress, current status, and prospects. Int J Nanomedicine 12:4085. https://doi.org/10.2147/IJN.S132780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. - Etheridge ML, Campbell SA, Erdman AG, Haynes CL, Wolf SM, McCullough J (2013) The big picture on nanomedicine: the state of investigational and approved nanomedicine products. Nanomedicine: NBM 9(1), 1–14. https://doi.org/10.1016/j.nano.2012.05.013

  3. Soleimani M, Mashayekhan S, Baniasadi H, Ramazani A, Ansarizadeh M (2018) Design and fabrication of conductive nanofibrous scaffolds for neural tissue engineering: Process modeling via response surface methodology. J Biomater Appl 33:619–629. https://doi.org/10.1177/0885328218808917

    Article  CAS  PubMed  Google Scholar 

  4. Baniasadi H, Ajdary R, Trifol J, Rojas O, Seppälä J (2021) Direct ink writing of aloe vera/cellulose nanofibrils bio-hydrogels. Carbohyd Polym. https://doi.org/10.1016/j.carbpol.2021.118114

    Article  Google Scholar 

  5. Malik NS, Ahmad M, Minhas MU, Tulain R, Barkat K, Khalid I, Khalid Q (2020) Chitosan/Xanthan gum based hydrogels as potential carrier for an antiviral drug: fabrication, characterization, and safety evaluation. Front Chem 8:50. https://doi.org/10.3389/fchem.2020.00050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Baniasadi H, Madani Z, Ajdary R, Rojas O, Seppälä J (2021) Ascorbic acid-loaded polyvinyl alcohol/cellulose nanofibril hydrogels as precursors for 3D printed materials. Mater Sci Eng C. https://doi.org/10.1016/j.msec.2021.112424

    Article  Google Scholar 

  7. Thakur S, Sharma B, Verma A, Chaudhary J, Tamulevicius S, Thakur VK (2018) Recent progress in sodium alginate based sustainable hydrogels for environmental applications. J Clean Prod 198:143–159. https://doi.org/10.1016/j.jclepro.2018.06.259

    Article  CAS  Google Scholar 

  8. Baniasadi H, Mashayekhan S, Fadaoddini S, Haghirsharifzamani Y (2016) Design, fabrication and characterization of oxidized alginate–gelatin hydrogels for muscle tissue engineering applications. J Biomater Appl 31(1):125–161. https://doi.org/10.1177/0885328216634057

    Article  CAS  Google Scholar 

  9. Martínez-Gómez F, Guerrero J, Matsuhiro B, Pavez J (2017) In vitro release of metformin hydrochloride from sodium alginate/polyvinyl alcohol hydrogels. Carbohy Polym 155:182–191. https://doi.org/10.1016/j.carbpol.2016.08.079

    Article  CAS  Google Scholar 

  10. García-González CA, Alnaief M, Smirnova I (2011) Polysaccharide-based aerogels—Promising biodegradable carriers for drug delivery systems. Carbohy Polym 86(4):1425–1438. https://doi.org/10.1016/j.carbpol.2011.06.066

    Article  CAS  Google Scholar 

  11. Bensouiki S, Belaib F, Sindt M, Magri P, Rup-Jacques S, Bensouici C, Meniai AH (2020) Evaluation of anti-inflammatory activity and in vitro drug release of ibuprofen-loaded nanoparticles based on sodium alginate and chitosan. Arab J Sci Eng 45(9):7599–7609. https://doi.org/10.1007/s13369-020-04720-2

    Article  CAS  Google Scholar 

  12. Karan S, Pal R, Ruhidas B, Banerjee S, Chatterjee TK (2016) Comparative pharmacokinetic study and quantification of ibuprofen released from interpenetrating polymer network beads of sodium carboxymethyl xanthan and sodium alginate. Indian J Pharm Educ Res 50:442–450. https://doi.org/10.5530/ijper.50.3.18

    Article  CAS  Google Scholar 

  13. Seeli DS, Dhivya S, Selvamurugan N, Prabaharan M (2016) Guar gum succinate-sodium alginate beads as a pH-sensitive carrier for colon-specific drug delivery. Int J Biol Macromol 91:45–50. https://doi.org/10.1016/j.ijbiomac.2016.05.057

    Article  CAS  PubMed  Google Scholar 

  14. - Akbari I, & Ghoreishi SM (2017) Generation of porous structure from basil seed mucilage via supercritical fluid assisted process for biomedical applications. Int J Pharm Sci Dev Res 3(1), 030–035. https://doi.org/10.17352/ijpsdr.000014

  15. Yari K, Akbari I, Yazdi SAV (2020) Development and evaluation of sodium alginate-basil seeds mucilage beads as a suitable carrier for controlled release of metformin. Int J Biol Macromol 159:1–10. https://doi.org/10.1016/j.ijbiomac.2020.04.111

    Article  CAS  PubMed  Google Scholar 

  16. Allafchian A, Jalali SAH, Mousavi SE, Hosseini SS (2020) Preparation of cell culture scaffolds using polycaprolactone/quince seed mucilage. Int J Biol Macromol 155:1270–1276. https://doi.org/10.1016/j.ijbiomac.2019.11.096

    Article  CAS  PubMed  Google Scholar 

  17. Baniasadi H, Teixeira Polez R, Kimiaei E, Madani Z, Rojas O, Österberg M, Seppälä J (2021) 3D printing and properties of cellulose nanofibrils-reinforced quince seed mucilage bio-inks. Int J Biol Macromol 192:1098–1107. https://doi.org/10.1016/j.ijbiomac.2021.10.078

    Article  CAS  PubMed  Google Scholar 

  18. Shao LI, Zhang B (2013) Traditional Chinese medicine network pharmacology: theory, methodology and application. Chin J Nat Med 11(2):110–120. https://doi.org/10.1016/S1875-5364(13)60037-0

    Article  Google Scholar 

  19. - Mudgil, D (2017) The interaction between insoluble and soluble fiber. In Dietary fiber for the prevention of cardiovascular disease (pp. 35–59). Academic Press. https://doi.org/10.1016/B978-0-12-805130-6.00003-3

  20. Rao MR, Babrekar L, Kharpude VS, Chaudhari J (2017) Synthesis and characterization of psyllium seed mucilage grafted with N, N-methylene bisacrylamide. Int J Biol Macromol 103:338–346. https://doi.org/10.1016/j.ijbiomac.2017.05.031

    Article  CAS  PubMed  Google Scholar 

  21. Singh B, Chauhan GS, Kumar S, Chauhan N (2007) Synthesis, characterization and swelling responses of pH sensitive psyllium and polyacrylamide based hydrogels for the use in drug delivery (I). Carbohy Polym 67(2):190–200. https://doi.org/10.1016/j.carbpol.2006.05.006

    Article  CAS  Google Scholar 

  22. Singh B, Sharma N, Chauhan N (2007) Synthesis, characterization and swelling studies of pH responsive psyllium and methacrylamide based hydrogels for the use in colon specific drug delivery. Carbohy Polym 69(4):631–643. https://doi.org/10.1016/j.carbpol.2007.01.020

    Article  CAS  Google Scholar 

  23. Khan SA, Schneider M (2013) Improvement of nanoprecipitation technique for preparation of gelatin nanoparticles and potential macromolecular drug loading. Macromol Biosci 13(4):455–463. https://doi.org/10.1002/mabi.201200382

    Article  CAS  PubMed  Google Scholar 

  24. Kumar S, Haq I, Prakash J, Raj A (2017) Improved enzyme properties upon glutaraldehyde crosslinking of alginate entrapped xylanase from Bacillus licheniformis. Int J Biol Macromol 98:24–33. https://doi.org/10.1016/j.ijbiomac.2017.01.104

    Article  CAS  PubMed  Google Scholar 

  25. Akbari I, Ghoreishi SM, Habibi N (2014) Generation and precipitation of paclitaxel nanoparticles in basil seed mucilage via combination of supercritical gas antisolvent and phase inversion techniques. J Supercrit Fluid 94:182–188. https://doi.org/10.1016/j.supflu.2014.07.007

    Article  CAS  Google Scholar 

  26. Britton HTS, Robinson RA (1931) CXCVIII—Universal buffer solutions and the dissociation constant of veronal. J Chem Soc. https://doi.org/10.1039/jr9310001456

    Article  Google Scholar 

  27. Dulbecco R, Vogt M (1954) Plaque formation and isolation of pure lines with poliomyelitis viruses. J Exp Med 99(2):167–182. https://doi.org/10.1084/jem.99.2.167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. - Guo T, Pei Y, Tang K, He X, Huang J, Wang F (2017) Mechanical and drug release properties of alginate beads reinforced with cellulose. J Appl Polym Sci 134(8). https://doi.org/10.1002/app.44495

  29. Huang X, Xiao Y, Lang M (2012) Micelles/sodium-alginate composite gel beads: A new matrix for oral drug delivery of indomethacin. Carbohy Polym 87(1):790–798. https://doi.org/10.1016/j.carbpol.2011.08.067

    Article  CAS  Google Scholar 

  30. - Nayak AK, Pal D, Santra K (2013) Plantago ovata F. Mucilage-alginate mucoadhesive beads for controlled release of glibenclamide: development, optimization, and in vitro-in vivo evaluation. J Pharm 2013. https://doi.org/10.1155/2013/151035

  31. - Korsmeyer RW, Peppas NA (1984) Solute and penetrant diffusion in swellable polymers. III. Drug release from glassy poly (HEMA-co-NVP) copolymers. J Control Release 1(2), 89–98. https://doi.org/10.1016/0168-3659(84)90001-4

  32. Bajpai SK, Kirar N (2016) Swelling and drug release behavior of calcium alginate/poly (sodium acrylate) hydrogel beads. Des Monomers Polym 19(1):89–98. https://doi.org/10.1080/15685551.2015.1092016

    Article  CAS  Google Scholar 

  33. - Bamgbose JT, Bamigbade AA, Adewuyi S, Dare EO, Lasisi AA, Njah AN (2012) Equilibrium swelling and kinetic studies of highly swollen chitosan film. Iran J Chem Chem Eng, 6(3).

  34. Dai YN, Li P, Zhang JP, Wang AQ, Wei Q (2008) A novel pH sensitive N-succinyl chitosan/alginate hydrogel bead for nifedipine delivery. Biopharm Drug Dispos 29(3):173–184. https://doi.org/10.1002/bdd.590

    Article  CAS  PubMed  Google Scholar 

  35. - Aprilliza M (2017) Characterization and properties of sodium alginate from brown algae used as an ecofriendly superabsorbent. In Materials Science and Engineering Conference Series (Vol. 188, No. 1, p. 012019). https://doi.org/10.1088/1757-899X/188/1/012019

  36. Mishra A, Srinivasan R, Bajpai M, Dubey R (2004) Use of polyacrylamide-grafted Plantago psyllium mucilage as a flocculant for treatment of textile wastewater. Colloid Polym Sci 282(7):722–727. https://doi.org/10.1007/s00396-003-1003-1

    Article  CAS  Google Scholar 

  37. Javanbakht S, Nezhad-Mokhtari P, Shaabani A, Arsalani N, Ghorbani M (2019) Incorporating Cu-based metal-organic framework/drug nanohybrids into gelatin microsphere for Ibuprofen oral delivery. Mater Sci Eng C 96:302–309. https://doi.org/10.1016/j.msec.2018.11.028

    Article  CAS  Google Scholar 

  38. - Acharya M, Mishra S, Sahoo RN, Mallick S (2017) Infrared spectroscopy for analysis of co-processed ibuprofen and magnesium trisilicate at milling and freeze drying. Acta Chim Slov, 64(1), 45–54. https://doi.org/10.17344/acsi.2016.2772

  39. - Lambert V, Adams DS (2007) I tested ibuprofen on my hangover. The Telegraph: http://www.telegraph.co.uk/news/health/3351540/Dr-Stewart-Adams-I-tested-ibuprofen-on-my-hangover.html

  40. Xia X, Hu Z, Marquez M (2005) Physically bonded nanoparticle networks: a novel drug delivery system. J Control Release 103:21–30. https://doi.org/10.1016/j.jconrel.2004.11.016

    Article  CAS  PubMed  Google Scholar 

  41. Allemann E, Gurny R, Doelker E (1993) Drug-loaded nanoparticles - preparation methods and drug targeting issues. Eur J Pharm Biopharm 39:173–191

    CAS  Google Scholar 

Download references

Funding

The authors did not receive support from any organization for the submitted work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hossein Baniasadi.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yari, K., Akbari, I. & Baniasadi, H. Ibuprofen nanoparticles-loaded sodium alginate/psyllium seed mucilage beads: evaluation the effect of different parameters on release and swelling rate. Polym. Bull. 80, 2911–2927 (2023). https://doi.org/10.1007/s00289-022-04186-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-022-04186-2

Keywords

Navigation