Skip to main content
Log in

Synthesis and characterization of Ppy and Ppy/zeolite and their use as adsorbents in removal of diclofenac sodium

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Synthesis of low-cost and high adsorption capacity adsorbents is extremely important in the removal of diclofenac sodium, which is among the nonsteroidal anti-inflammatory drugs and has a toxic effect in wastewaters. In this study, we synthesized a composite with Ppy to improve the adsorption capacity of the zeolite. Polypyrrole (Ppy) and Ppy/zeolite used as adsorbents in diclofenac sodium (DCF) removal were synthesized by chemical oxidation method. Characterizations of synthesized Ppy and Ppy/zeolite adsorbents were investigated using Fourier transformed infrared spectroscopy (FTIR), X-ray diffraction, scanning electron microscopy with energy-dispersive X-ray spectroscopy (SEM/EDX) and thermogravimetric analysis (TGA) methods. The effects of DCF initial concentration change, pH (6 and 9) and temperature (293 K, 303 K and 313 K) on the removal of DCF by adsorption were investigated. The adsorption mechanism of both adsorbents was investigated with Langmuir, Freundlich and Dubinin–Radushkevich (D–R) adsorption isotherm curves, and the adsorption reaction kinetics were explained using pseudo-first- and second-order kinetic models. In addition, the thermodynamic parameters (ΔG, ΔS and ΔH) of the DCF adsorption reaction were calculated. According to the experimental results obtained, the adsorption mechanism in DCF removal was explained by Langmuir adsorption isotherm by using Ppy and Ppy/zeolite as adsorbents, while the conformity of the reaction kinetics to the pseudo-second-order reaction rate model was determined. In addition, the calculated ΔG values indicate that the adsorption reaction occurs spontaneously, and the ΔH values indicate that the reaction is exothermic. As the temperature increased, the maximum absorption capacity decreased. Consequently, it was determined that DCF adsorption efficiency was high with the use of very small amounts of Ppy and Ppy/zeolite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1.
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16.

Similar content being viewed by others

References

  1. Rodríguez-Álvarez T, Rodil R, Quintana JB, TriñanesS CR (2013) Oxidation of non-steroidal anti-inflammatory drugs with aqueous permanganate. Water Res 47:3220–3230

    PubMed  Google Scholar 

  2. Larsson N, Petersson E, Rylander M, Jönsson JÅ (2009) Continuous flow hollow fiber liquid-phase microextraction and monitoring of NSAID pharmaceuticals in a sewage treatment plant effluent. Anal Methods 1:59–67

    CAS  PubMed  Google Scholar 

  3. Green RE, Newton IAN, Shultz S, Cunningham AA, Gilbert M, Pain DJ, Prakash V (2004) Diclofenac poisoning as a cause of vulture population declines across the Indian subcontinent. J Appl Ecol 41:793–800

    CAS  Google Scholar 

  4. Orias F, Perrodin Y (2013) Characterisation of the ecotoxicity of hospital effluents: a review. Sci Total Environ 454–455:250–276

    PubMed  Google Scholar 

  5. Taggart MA, Cuthbert R, Das D, Sashikumar C, Pain DJ, Green RE, Meharg AA (2007) Diclofenac disposition in Indian cow and goat with reference to Gyps vulture population declines. Environ Pollut 147:60–65. https://doi.org/10.1016/j.envpol.2006.08.017

    Article  CAS  PubMed  Google Scholar 

  6. Mcnelly W, Goa KL (1999) Diclofenac-potassium in migraine: a review. Drugs 57:991–1003

    Google Scholar 

  7. Godiya CB, Kumar S, Xiao Y (2020) Amine functionalized egg albumin hydrogel with enhanced adsorption potential for diclofenac sodium in water. J Hazard Mater 393:122417

    CAS  PubMed  Google Scholar 

  8. Gouda AA, El-Sayed MIK, Amin AS, Sheikh RE (2013) Spectrophotometric and spectrofluorometric methods for the determination of non-steroidal anti-inflammatory drugs: a review. Arab J Chem 6:145–163

    CAS  Google Scholar 

  9. Sun Y, Takaba K, Kido H, Nakashima MN, Nakashima K (2003) Simultaneous determination of arylpropionic acidic non-steroidal anti-inflammatory drugs in pharmaceutical formulations and human plasma by HPLC with UV detection. J Pharm Biomed Anal 30:1611–1619

    CAS  PubMed  Google Scholar 

  10. Buser HR, Poiger T, Müller MD (1998) Occurrence and fate of the pharmaceutical drug diclofenac in surface waters: rapid photodegradation in a lake. Environ Sci Tech 32:3449–3456

    CAS  Google Scholar 

  11. Vieno N, Tuhkanen T, Kronberg L (2006) Removal of pharmaceuticals in drinking water treatment: effect of chemical coagulation. Environ Tech 27(2):183–192. https://doi.org/10.1080/09593332708618632

    Article  CAS  Google Scholar 

  12. Joss A, Zabczynski S, Göbel A, Hoffmann B, Löffler D, McArdell CS, Siegrist H (2006) Biological degradation of pharmaceuticals in municipal wastewater treatment: proposing a classification scheme. Water Res 40:1686–1696

    CAS  PubMed  Google Scholar 

  13. Boyd GR, Zhang S, Grimm DA (2005) Naproxen removal from water by chlorination and biofilm processes. Water Res 39:668–676

    CAS  PubMed  Google Scholar 

  14. Esplugas S, Bila DM, Krause LGT, Dezotti M (2007) Ozonation and advanced oxidation technologies to remove endocrine disrupting chemicals (EDCs) and pharmaceuticals and personal care products (PPCPs) in water effluents. J Hazardous Mater 149:631–642

    CAS  Google Scholar 

  15. Klavarioti M, Mantzavinos D, Kassinos D (2009) Removal of residual pharmaceuticals from aqueous systems by advanced oxidation processes. Environ Inter 35:402–417

    CAS  Google Scholar 

  16. Suriyanon N, Permrungruang J, Kaosaiphun J, Wongrueng AN, Gamcharussrivichai C, Punyapalakul P (2015) Selective adsorption mechanisms of antilipidemic and non-steroidal anti-inflammatory drug residues on functionalized silica-based porous materials in a mixed solute. Chemosphere 136:222–231

    CAS  PubMed  Google Scholar 

  17. Sotelo JL, Ovejero G, Rodríguez A, Álvarez S, Galán J, García J (2014) Competitive adsorption studies of caffeine and diclofenac aqueous solutions by activated carbon. Chem Eng J240:443–453

    Google Scholar 

  18. Beltrán FJ, Pocostales P, Alvarez P, Oropesa A (2009) Diclofenac removal from water with ozone and activated carbon. J Hazard Mater 163:768–776

    PubMed  Google Scholar 

  19. Streit AFM, Collazzo GC, Druzian SP, Verdi RS, Foletto EL, Oliveira LFS, Dotto GL (2021) Adsorption of ibuprofen, ketoprofen, and paracetamol onto activated carbonprepared from effluent treatment plant sludge of the beverage industry. Chemosphere 262(1):128322

    CAS  PubMed  Google Scholar 

  20. El-Sheikh AH, Qawariq RF, Abdelghani JI (2019) Adsorption and magnetic solid-phase extraction of NSAIDs from pharmaceutical wastewater using magnetic carbon nanotubes: effect of sorbent dimensions, magnetite loading and competitive adsorption study. Environ Technol Innov 16:100496

    Google Scholar 

  21. Pap S, Taggart MA, Shearer L, Li Y, Radovic S, Sekulic MT (2021) Removal behaviour of NSAIDs from Waste water using a P-functionalised microporous carbon. Chemosphere 264:128439. https://doi.org/10.1016/j.chemosphere.2020.128439

    Article  CAS  PubMed  Google Scholar 

  22. Bhadra BN, Seo PW, Jhung SH (2016) Adsorption of diclofenac sodium from water using oxidized activated carbon. Chem Eng J 301:27–34. https://doi.org/10.1016/j.cej.2016.04.143

    Article  CAS  Google Scholar 

  23. Viotti PV, Moreira WM, Andreo dos Santos OA, Bergamasco R, Vieira AMS, Vieira MF (2019) Diclofenac removal from water by adsorption on Moringa oleifera pods and activated carbon: mechanism, kinetic and equilibrium stud. J Cleaner Prod 219:809–817. https://doi.org/10.1016/j.jclepro.2019.02.129

    Article  CAS  Google Scholar 

  24. Gómez-Avilés A, Sellaoui L, Badawi M, Bonilla-Petriciolet A, Bedia J, Belver C (2021) Simultaneous adsorption of acetaminophen, diclofenac and tetracycline by organo-sepiolite: experiments and statistical physics modelling. Chem Engineer J 404:126601. https://doi.org/10.1016/j.cej.2020.126601

    Article  CAS  Google Scholar 

  25. Mabroukia H, Akretchea DE (2016) Diclofenac potassium removal from water by adsorption on natural and pillared clay. Desalin Water Treat 57(13):6033–6043. https://doi.org/10.1080/19443994.2014.1002008

    Article  CAS  Google Scholar 

  26. Almeida HFD, Neves MC, Trindade T, Marrucho IM, Freire MG (2020) Supported ionic liquids as efficient materials to remove non-steroidal antiinflammatory drugs from aqueous media. Chem Engineer J 381:122616. https://doi.org/10.1016/j.cej.2019.122616

    Article  CAS  Google Scholar 

  27. Lu X, Shao Y, Gao N, Chen J, Zhang Y, Wang Q, Lu Y (2016) Adsorption and removal of clofibric acid and diclofenac from water with MIEX resin. Chemosphere 161:400–411. https://doi.org/10.1016/j.chemosphere.2016.07.025

    Article  CAS  PubMed  Google Scholar 

  28. Feng Z, Simeone A, Odelius K, Hakkarainen M (2017) Biobased nanographene oxide creates stronger chitosan hydrogels with improved adsorption capacity for trace pharmaceuticals. ACS Sustain Chem Eng 5:11525–11535. https://doi.org/10.1021/acssuschemeng.7b02809

    Article  CAS  Google Scholar 

  29. Zubair H, Khan NA, Jhung SH (2016) Adsorptive removal of diclofenac sodium from water with Zr-based metal–organic frameworks. Chem Engineer J 284:1406–1413. https://doi.org/10.1016/j.cej.2015.08.087

    Article  CAS  Google Scholar 

  30. Bhadra BN, Ahmed I, Kim S, Jhung SH (2017) Adsorptive removal of ibuprofen and diclofenac from water using metal-organic framework-derived porous carbon. Chem Eng J 314:50–58. https://doi.org/10.1016/j.cej.2016.12.127

    Article  CAS  Google Scholar 

  31. Xu H, Zhu S, Xia M, Wang F (2021) Rapid and efficient removal of diclofenac sodium from aqueous solution via ternary core-shell CS@PANI@LDH composite: experimental and adsorption mechanism study. J Hazard Mater 402:123815. https://doi.org/10.1016/j.jhazmat.2020.123815

    Article  CAS  PubMed  Google Scholar 

  32. Pires BC, Dutra FVA, Nascimento TA, Borges KB (2017) Preparation of Ppy/cellulose fibre as an effective potassium diclofenac adsorbent. React Funct Polym 113:40–49. https://doi.org/10.1016/j.reactfunctpolym.2017.02.002

    Article  CAS  Google Scholar 

  33. Liang XX, Omer AM, Hu ZH, Wang YG, Yu D, Ouyang XK (2019) Efficient adsorption of diclofenac sodium from aqueous solutions using magnetic amine-functionalized chitosan. Chemosphere 217:270–278. https://doi.org/10.1016/j.chemosphere.2018.11.023

    Article  CAS  PubMed  Google Scholar 

  34. Feng Z, Odelius K, Rajarao GK, Hakkarainen M (2018) Microwave carbonized cellulose for trace pharmaceutical adsorption. Chem Engineer J 346:557–566. https://doi.org/10.1016/j.cej.2018.04.014

    Article  CAS  Google Scholar 

  35. Dan S, Kalantari M, Kamyabi A, Soltani M (2021) Synthesis of chitosan g itaconic acid hydrogel as an antibacterial drug carrier: optimization through RSM CCD. Polym Bull. https://doi.org/10.1007/s00289-021-03903-7

    Article  Google Scholar 

  36. Ozcan AS, Erdem B, Ozcan A (2005) Adsorption of Acid Blue 193 from aqueous solutions onto BTMA–bentonite. Colloids Surf A Physicochem Eng Aspects 266:73–81. https://doi.org/10.1016/j.colsurfa.2005.06.001

    Article  CAS  Google Scholar 

  37. Salem TM, Lin X (2013) Synthesized magnetic nanoparticles coated zeolite for the adsorption of pharmaceutical compounds from aqueous solution using batch and column studies. Chemosphere 93(9):2076–2085. https://doi.org/10.1016/j.chemosphere.2013.07.046

    Article  CAS  Google Scholar 

  38. Garcia JJM, Nuñez JAP, Salapare HS III, Vasquez MR Jr (2019) Adsorption of diclofenac sodium in aqueous solution using plasma-activated natural zeolites. Results in Physics 15:102629. https://doi.org/10.1016/j.rinp.2019.102629

    Article  Google Scholar 

  39. Rad LR, Anbia M (2021) Zeolite-based composites for the adsorption of toxic matters from water: a review. J Environ Chem Eng 9:106088

    Google Scholar 

  40. Li X, Wang Y, Yang X, Chen J, Fu H, Cheng T, Wang Y (2012) Conducting polymers in environmental analysis. Trends Anal Chem 39:163–179. https://doi.org/10.1016/j.trac.2012.06.003

    Article  CAS  Google Scholar 

  41. Stejskal J (2020) Conducting polymers are not just conducting: a perspective for emerging technology. Polym Inter 69:662–664. https://doi.org/10.1002/pi.5947

    Article  CAS  Google Scholar 

  42. Abdi S, Nasiri M, Mesbahi A, Khani MH (2017) Investigation of uranium (VI) adsorption by polypyrrole. J Hazard Mater 332:132–139. https://doi.org/10.1016/j.jhazmat.2017.01.013

    Article  CAS  PubMed  Google Scholar 

  43. Gholivand MB, Yamini Y, Dayeni M, Seidi S, Tahmasebi E (2015) Adsorptive removal of alizarin red-S and alizarin yellow GG from aqueous solutions using polypyrrole-coated magnetic nanoparticles. J Environ Chem Eng 3:529–540. https://doi.org/10.1016/j.jece.2015.01.011

    Article  CAS  Google Scholar 

  44. Digambar MA, Santosh J, Pandurang M, Ashpak T (2015) Development and validation of UV spectrophotometric estimation of diclofenac sodium bulk and tablet dosage form using area under curve method. PharmaTutor 3(4):21–25

    Google Scholar 

  45. Tarmizi EZM, Baqiah H, Talib ZA, Kamari HM (2018) Preparation and physical properties of polypyrrole/zeolite composites. Results in Phys 11:793–800

    Google Scholar 

  46. Wang W, Feng Q, Liu K, Zhang G, Liu J, Huang Y (2015) A novel magnetic 4A zeolite adsorbent synthesised from kaolinite type pyrite cinder (KTPC). Solid State Sci 39:52–58

    CAS  Google Scholar 

  47. Rashidzadeh A, Olad A, Ahmadi S (2013) Preparation and characterization of polypyrrole/clinoptilolite nanocomposite with enhanced electrical conductivity by surface polymerization method. Polym Eng Sci 53(5):970–975

    CAS  Google Scholar 

  48. Sezin S, Karakişla MS (2014) M polypyrrole/natural zeolite composite prepared by in situ oxidative polymerization: thermal and humidity sensing properties. J Macromol Sci Part A 51(5):404–411. https://doi.org/10.1080/10601325.2014.893132

    Article  CAS  Google Scholar 

  49. Senguttuvan S, Janaki V, Senthilkumar P, Kamala-Kannan S (2022) Polypyrrole/zeolite composite—a nanoadsorbent for reactive dyes removal from synthetic solution. Chemosphere 287:132164

    CAS  PubMed  Google Scholar 

  50. Ramachandran E, Ramukutty S (2014) Growth, morphology, spectral and thermal studies of gel grown diclofenac acid crystals. J Crystal Growth 389(3):78–82

    CAS  Google Scholar 

  51. Eisazadeh H (2007) Studying the characteristics of polypyrrole and its composites. World J Chem 2(2):67–74

    Google Scholar 

  52. Schartel B, Dittrich B, Wartig K, Hofmann D, Rolf M (2015) The influence of layered spherical and tubular carbon nanomaterials’ concentration on the flame retardancy of polypropylene. Polym Compos 36(7):1230–1241

    Google Scholar 

  53. Joulazadeh M, Navarchian AH (2015) Ammonia detection of one-dimensional nano-structured polypyrrole/metaloxide nanocomposites sensors. Synth Met 210:404–411

    CAS  Google Scholar 

  54. Ahmed K, Kanwal F, Ramay SM, Atiq S, Rehman R, Ali SM, Alzayed NS (2018) Synthesis and characterization of BaTiO3/polypyrrole composites with exceptional dielectric behaviour. Polymers 10(11):1273

    PubMed  PubMed Central  Google Scholar 

  55. Bhugul VT, Choudhari GN (2013) Synthesis and characterization of polypyrrole-zinc oxide nano composites by ex-situ technique and study of their thermal and electrical properties. Int J Adv Innov Res 2:2278–7844

    Google Scholar 

  56. Bhugul VT, Choudhari GN (2015) Synthesis and studies on nanocomposites of polypyrrole-Al-doped zincoxide nanoparticles. Inter J Sci Res Pub 5(1):1–5

    Google Scholar 

  57. Salam MA, Obaid AY, El-Shishtawy RM, Mohamed SA (2017) Synthesis of nanocomposites of polypyrrole/carbon nanotubes/silver nano particles and their application in water disinfection. RSC Adv 7:16878–16884

    Google Scholar 

  58. Thu TV (2019) Free-standing polypyrrole/polyaniline composite film fabricated by interfacial polymerization at the vapor/liquid interface for enhanced hexavalent chromium adsorption. RSC Adv 9:5445–5452. https://doi.org/10.1039/C8RA10478F

    Article  PubMed  PubMed Central  Google Scholar 

  59. Chen X, Issi JP, Devaux J, Billaud D (1995) Chemically oxidized polypyrrole influence of the experimental conditions on its electrical conductivity and morphology. Polym Eng Sci 35(8):642–647

    CAS  Google Scholar 

  60. Aarab N, Laabd M, Eljazouli H, Lakhmiri R, Kabli H, Albourine A (2019) Experimental and DFT studies of the removal of pharmaceutical metronidazole from water using polypyrrole. Int J Ind Chem 10:269–279

    CAS  Google Scholar 

  61. Xie Q, Xie J, Wang Z, Wu D, Zhang Z, Kong H (2013) Adsorption of organic pollutants by surfactant modified zeolite as controlled by surfactant chain length. Micropor Mesopor Mat 179:144–150

    CAS  Google Scholar 

  62. Yagub MT, Sen TK, Afroze S, Ang HM (2014) Dye and its removal from aqueous solution by adsorption: a review. Adv Colloid Interface Sci 209:172–184

    CAS  PubMed  Google Scholar 

  63. Bajpai SK, Bhowmik M (2010) Adsorption of diclofenac sodium from aqueous solution using polyaniline as a potential sorbent I Kinetic studies. J Appl Polym Sci 117:3615–3622

    CAS  Google Scholar 

  64. Zhang X, Bai R, Tong YW (2014) Selective adsorption behaviors of proteins on polypyrrole-based adsorbents. RSC Adv 4:17805–17811

    Google Scholar 

  65. Liu T, Xie Z, Zhang Y, Fan J, Liu Q (2017) Preparation of cationic polymeric nanoparticles as an effective adsorbent for removing diclofenac sodium from water. RSC Adv 7:38279–38286

    CAS  Google Scholar 

  66. Coombs DS, Alberti A, Armbruster T, Artioli G, Colella C, Galli E, Grice JD, Liebau F, Mandarino JA, Minato H, Nickel EH, Passaglia E, Peacor DR, Quartieri S, Rinaldi R, Ross M, Sheppard RA, Tillmanns E, Vezzalini G (1997) Recommended nomenclature for zeolite minerals: report of the subcommittee on zeolites of the international mineralogical association, commission on new minerals and mineral names. Can Mineral 35:1571–1606

    CAS  Google Scholar 

  67. Sellaoui L, Mechi N, Lima ÉC, Dotto GL, Lamine AB (2017) Adsorption of diclofenac and nimesulide on activated carbon: statistical physics modeling and effect of adsorbate size. J Phys Chem Solids 109:117–123

    CAS  Google Scholar 

  68. Xiong T, Yuan X, Wang H, Wu Z, Jiang L, Leng L, Zeng G (2019) Highly efficient removal of diclofenac sodium from medical wastewater by Mg/Al layered double hydroxide-poly (m-phenylenediamine) composite. Chem Eng J 366:83–91

    CAS  Google Scholar 

  69. Banivaheb S, Dan S, Hashemipour H, Kalantari M (2021) Synthesis of modified chitosan TiO2 and SiO2 hydrogel nanocomposites for cadmium removal. J Saudi Chem Soc 25:101283

    CAS  Google Scholar 

  70. Arabpour A, Dan S, Hashemipour H (2021) Preparation and optimization of novel graphene oxide and adsorption isotherm study of methylene blue. Arabian J Chem 14:103003

    CAS  Google Scholar 

  71. Yang ST, Chen S, Chang Y, Cao A, Liu Y, Wang H (2011) Removal of methylene blue from aqueous solution by graphene oxide. J Colloid Interface Sci 359(1):24–29

    CAS  PubMed  Google Scholar 

  72. Dubinin MM, Radushkevich LV (1947) The equation of the characteristic curve of activated charcoal. Proc Acad Sci Phys Chem Sect 55:331–333

    Google Scholar 

  73. Al-Ghouti MA, Da’ana DA (2020) Guidelines for the use and interpretation of adsorption isotherm models: a review. J Hazard Mater 93:122383

    Google Scholar 

Download references

Acknowledgements

This project was supported by Kocaeli University Scientific Research Projects Unit (KOU-BAP) (KOU-BAP project no: 2019/030-00 and FYL-2020-1655). Thank you for supporting KOU-BAP.

Author information

Authors and Affiliations

Authors

Contributions

SD conceived of the presented idea and work conceptualization. She also developed experimental analysis investigations. IE Cimlek carried out the experimental studies that were designed. Both authors have discussed the experimental results and contributed to the final version of the presented work.

Corresponding author

Correspondence to Sibel Demirel.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Ethical approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Demirel, S., Çimlek, İ.E. Synthesis and characterization of Ppy and Ppy/zeolite and their use as adsorbents in removal of diclofenac sodium. Polym. Bull. 80, 2585–2615 (2023). https://doi.org/10.1007/s00289-022-04183-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-022-04183-5

Keywords

Navigation