Skip to main content
Log in

Preparation of image-recording layers with carboxyl-containing polymer latexes and an amine-oxide-substituted polymer

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

A physical crosslinking strategy based on hydrogen bonding interaction was developed to prepare image-recording layers derived from carboxyl-containing polymer latexes, a hydrophilic amine-oxide-substituted polymer, and a water-soluble IR-absorbing dye. Carboxyl-containing polymer latexes were prepared by emulsion copolymerization of mono-2-(methacryloyloxy)-ethyl phthalate, styrene and acrylonitrile. A water-soluble amine-oxide-containing polymer (O-PDMAEA) was prepared by aqueous polymerization of 2-(dimethylamino) ethyl acrylate followed by oxidation with hydrogen peroxide. The hydrogen bonding interaction between the polymer latex particles and the O-PDMAEA and its effects were studied. Coating solutions comprising the polymer latex and the O-PDMAEA were prepared and applied to the aluminum lithographic substrate by spin-coating to obtain the image-recording layers. After they were exposed to 830 nm infrared laser light and developed with water, a visible image on the substrate could be obtained. The properties of the image-recording layers were evaluated by scanning electron microscope, water contact angle analyzer, inspection of the image quality and adhesion test. Results showed that both the image quality and adhesion of the image to the substrate were improved by introducing hydrogen bonding interaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Scheme 3
Scheme 4
Fig. 1
Fig. 2
Scheme 5
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Strehmel B, Schmitz C, Bromme T, Halbhuber A, Oprych D, Gutmann JS (2016) Advances of near infrared sensitized radical and cationic photopolymerization: from graphic industry to traditional coatings. J Photopolym Sci Tec 29(1):111–121. https://doi.org/10.2494/photopolymer.29.111

    Article  CAS  Google Scholar 

  2. Ramesh D, Vasudevan T (2009) Synthesis and physico-chemical evaluation of water-soluble epoxy ester primer coating. Prog Org Coat 66(2):93–98. https://doi.org/10.1016/j.porgcoat.2009.06.007

    Article  CAS  Google Scholar 

  3. Pu J, Guo H, Wu J, Li Z (2007) Novel thermo-sensitive polymer matrixes and their imaging properties. J Eur Polym 43(5):2057–2065. https://doi.org/10.1016/j.eurpolymj.2006.12.005

    Article  CAS  Google Scholar 

  4. Shibuya A, Kunita K, Koizumi S (2013) High sensitive photopolymerization initiator system using violet laser and its application to photopolymer CTP plate. J Photopolym Sci Tec 26(2):249–254. https://doi.org/10.2494/photopolymer.26.249

    Article  CAS  Google Scholar 

  5. Yamakawa S, Amaya K, Gelbart D, Urano T, Lemire-Elmore J (2004) Development of three-dimensional microfabrication method using thermo-sensitive resin. Appl Phys B 79(4):507–511. https://doi.org/10.1007/s00340-004-1597-0

    Article  CAS  Google Scholar 

  6. Zhao Y, Song Y, Song W, Liang W, Jiang X, Tang Z, Xu H, Wei Z, Liu Y, Liu M, Jiang L, Bao X, Wan L, Bai C (2014) Progress of nanoscience in China. Front Phys-Beijing 9(3):257–288. https://doi.org/10.1007/s11467-013-0324-x

    Article  Google Scholar 

  7. Paul C Edge (2011) Lithographic printing plate precursor. United State Patent. Pub. No. 2011/0287364A1

  8. An L, Cai Z, Wang W, Pu J, Li Z (2014) A thermo-sensitive imaging coating derived from polymer nanoparticles containing infrared absorbing dye. J Eur Polym 52:166–171. https://doi.org/10.1016/j.eurpolymj.2014.01.002

    Article  CAS  Google Scholar 

  9. Liang Z, Zhu J, Li F, Wu Z, Liu Y, Xiong D (2021) Synthesis and properties of self-crosslinking waterborne polyurethane with side chain for water-based varnish. Prog Org Coat. https://doi.org/10.1016/j.porgcoat.2020.105972

    Article  Google Scholar 

  10. Qiang T, Han M, Li X (2018) Synthesis, characterization and fluorescence performance of a novel SAF-based waterborne polyurethane. Prog Org Coat 122:248–254. https://doi.org/10.1016/j.porgcoat.2018.05.030

    Article  CAS  Google Scholar 

  11. Wu G, Kong Z, Chen J, Huo S, Liu G (2014) Preparation and properties of waterborne polyurethane/epoxy resin composite coating from anionic terpene-based polyol dispersion. Prog Org Coat 77(2):315–321. https://doi.org/10.1016/j.porgcoat.2013.10.005

    Article  CAS  Google Scholar 

  12. Kadłubowski S, Henke A, Ulański P, Rosiak JM, Bromberg L, Hatton TA (2007) Hydrogels of polyvinylpyrrolidone (PVP) and poly(acrylic acid) (PAA) synthesized by photoinduced crosslinking of homopolymers. Polymer 48(17):4974–4981. https://doi.org/10.1016/j.polymer.2007.06.033

    Article  CAS  Google Scholar 

  13. Sardon H, Irusta L, Fernández-Berridi MJ, Lansalot M, Bourgeat-Lami E (2010) Synthesis of room temperature self-curable waterborne hybrid polyurethanes functionalized with (3-aminopropyl)triethoxysilane (APTES). Polymer 51(22):5051–5057. https://doi.org/10.1016/j.polymer.2010.08.035

    Article  CAS  Google Scholar 

  14. Henke A, Kadlubowski S, Ulanski P, Rosiak JM, Arndt K (2005) Radiation-induced cross-linking of polyvinylpyrrolidone-poly(acrylic acid) complexes. Nucl Instrum Methods Phys Res Sect B: Beam Interact Mater At 236(1–4):391–398. https://doi.org/10.1016/j.nimb.2005.04.003

    Article  CAS  Google Scholar 

  15. Liu F, Han D (2011) Preparation and properties of water-borne polyurethane with branched straight aliphatic chains. J Appl Polym Sci 121(3):1536–1542. https://doi.org/10.1002/app.33689

    Article  CAS  Google Scholar 

  16. Fei X, Wei W, Tang Y, Zhu Y, Luo J, Chen M, Liu X (2017) Simultaneous enhancements in toughness, tensile strength, and thermal properties of epoxy-anhydride thermosets with a carboxyl-terminated hyperbranched polyester. J Eur Polym 90:431–441. https://doi.org/10.1016/j.eurpolymj.2017.03.022

    Article  CAS  Google Scholar 

  17. Alupei IC, Alupei V, Ritter H (2003) Cyclodextrins in polymer synthesis: crosslinking water-soluble unsaturated polyester resins using a cyclodextrin/styrene complex in aqueous medium. Macromol Rapid Comm 24(8):527–531. https://doi.org/10.1002/marc.200390081

    Article  CAS  Google Scholar 

  18. O’Reilly RK, Joralemon MJ, Hawker CJ, Wooley KL (2006) Facile syntheses of surface-functionalized micelles and shell cross-linked nanoparticles. J Polym Sci Part A: Polym Chem 44(17):5203–5217. https://doi.org/10.1002/pola.21602

    Article  CAS  Google Scholar 

  19. Wang L, Wang Z, Zhang X, Shen J, Chi L, Fuchs H (1997) A new approach for the fabrication of an alternating multilayer film of poly(4-vinylpyridine) and poly(acrylic acid) based on hydrogen bonding. Macromol Rapid Comm 18(6):509–514. https://doi.org/10.1002/marc.1997.030180609

    Article  CAS  Google Scholar 

  20. Lei L, Xia Z, Lin X, Yang T, Zhong L (2014) Synthesis and adhesion properties of waterborne polyurethane dispersions with long-branched aliphatic chains. J Appl Polym Sci. https://doi.org/10.1002/app.41688

    Article  Google Scholar 

  21. Shen X, Liu X, Dai J, Liu Y, Zhang Y, Zhu J (2017) How does the hydrogen bonding interaction influence the properties of furan-based epoxy resins. Ind Eng Chem Res 56(38):10929–10938. https://doi.org/10.1021/acs.iecr.7b02901

    Article  CAS  Google Scholar 

  22. Gao J, Zhai G (2019) Poly(tertiary amine) as a surface-active multifunctional macro-initiator in Cu2+ amine redox-initiated radical emulsion polymerization of methyl methacrylate. Polym Bull 76(7):3403–3422. https://doi.org/10.1007/s00289-018-2534-4

    Article  CAS  Google Scholar 

  23. Maeda H (1996) Dodecyldimethylamine oxide micelles: stability, aggregation number and titration properties. Colloids Surf A: Physicochem Eng Asp 109:263–271. https://doi.org/10.1016/0927-7757(95)03459-5

    Article  CAS  Google Scholar 

  24. Lee JY, Painter PC, Coleman MM (1988) Hydrogen bonding in polymer blends. 4. Blends involving polymers containing methacrylic acid and vinylpyridine groups. Macromolecules 21(4):954–960. https://doi.org/10.1021/ma00182a019

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Natural Science Foundation of China (21905028), Scientific Research Project of Beijing Educational Committee (KM202110015009), and Beijing Municipal Natural Science Foundation (No. 2192017).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhongxiao Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

An, L., Zhang, H., Qin, K. et al. Preparation of image-recording layers with carboxyl-containing polymer latexes and an amine-oxide-substituted polymer. Polym. Bull. 80, 2929–2945 (2023). https://doi.org/10.1007/s00289-022-04179-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-022-04179-1

Keywords

Navigation