Skip to main content
Log in

Dispersion characteristics of polypropylene/organo-modified single-walled carbon nanotube composites with a long-chain phosphonic acid added as the third dispersant component and their drawn orientation

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

A simple substance was added as the third component to a composite material comprising polypropylene (PP), a general-purpose resin, and long-chain phosphonate-modified single-walled carbon nanotubes (SWCNTs) to improve the filler dispersibility of the composite. Although SWCNTs with high aggregation characteristics could be introduced into organic polymers by modifying the organic chains on the outermost surface of the nanoparticles, their dispersibility was not sufficient. As a compound with a low molecular weight, a stearyl phosphonic acid was used as the modifier in this study. Due to the high sublimation temperature of this modifier, which exceeded the melting point of PP, a jet-black composite with high dispersibility was obtained when the modifier was added as the third component during melt-compounding. The jet-black three-component composite film exhibited better tensile properties than the two-component composite film. Analyzing the stretch orientation characteristics, the uniaxial stretching process induced deagglomeration, eliminating the difference in the initial dispersion states of the composites.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Stankovich S, Dikin DA, Dommett GHB, Kohlhaas KM, Zimney EJ, Stach EA, Piner RD, Nguyen ST, Ruoff RS (2006) Graphene-based composite materials. Nature 442:282–286

    Article  CAS  PubMed  Google Scholar 

  2. Capadona JR, Shanmuganathan K, Tyler DJ, Rowan SJ, Weder C (2008) Stimuli-responsive polymer nanocomposites inspired by the sea cucumber dermis. Science 319:1370–1374

    Article  CAS  PubMed  Google Scholar 

  3. Zhang H, Dasbiswas K, Ludwig NB, Han G, Lee B, Vaikuntanathan S, Talapin DV (2017) Stable colloids in molten inorganic salts. Nature 542:328–331

    Article  CAS  PubMed  Google Scholar 

  4. Rittigstein P, Priestley RD, Broadbelt LJ, Torkelson JM (2007) Model polymer nanocomposites provide an understanding of confinement effects in real nanocomposites. Nat Mater 6:278–282

    Article  CAS  PubMed  Google Scholar 

  5. Zhou J, Qiao XY, Binks BP, Sun K, Bai MW, Li YL, Liu Y (2011) Magnetic pickering emulsions stabilized by Fe3O4 nanoparticles. Langmuir 27:3308–3316

    Article  CAS  PubMed  Google Scholar 

  6. Zhang YM, Guo S, Wu WT, Qin ZR, Liu XF (2016) CO2-Triggered pickering emulsion based on silica nanoparticles and tertiary amine with long hydrophobic tails. Langmuir 32:11861–11867

    Article  CAS  PubMed  Google Scholar 

  7. Matsuoka H, Nakayama S, Yamada T (2012) X-ray reflectivity study of the effect of ion species on nanostructure and its transition of poly(styrenesulfonate) brush at the air/water interface. Chem Lett 29:8718–8727

    Google Scholar 

  8. Chen QB, Liang XD, Wang SL, Xu SH, Liu HL, Hu Y (2007) Cationic gemini surfactant at the air/water interface. J Colloid Interface Sci 314:651–658

    Article  CAS  Google Scholar 

  9. Perepichka II, Lu Q, Badia A, Bazuin CG (2013) Understanding and controlling morphology formation in langmuir-blodgett block copolymer films using PS-P4VP and PS-P4VP/PDP. Langmuir 29:4502–4519

    Article  CAS  PubMed  Google Scholar 

  10. Zhu HT, Wang LN, Jie XM, Liu DD, Cao YM (2016) Improved interfacial affinity and CO2 separation performance of asymmetric mixed matrix membranes by incorporating postmodified MIL-53(AI). ACS Appl Mater Interfaces 8:22696–22704

    Article  CAS  PubMed  Google Scholar 

  11. Balazs AC, Emrick T, Russell TP (2006) Nanoparticle polymer composites: where two small worlds meet. Science 314:1107–1110

    Article  CAS  PubMed  Google Scholar 

  12. Pan XL, Shen LH, Schenning APHJ, Bastiaansen CWM (2019) Transparent, high-thermal-conductivity ultradrawn polyethylene/graphene nanocomposite films. Adv Mater 31:1904348

    Article  CAS  Google Scholar 

  13. Akhtar MW, Lee YS, Yang CM, Kim JS (2016) Functionalization of mild oxidized graphene with O-phenylenediamine for highly thermally conductive and thermally stable epoxy composites. RSC Adv 6:100448–100458

    Article  CAS  Google Scholar 

  14. Das S, Chattopadhyay S, Dhanania S, Bhowmick AK (2020) Improved dispersion and physico-mechanical properties of rubber/silica composites through new silane grafting. Polym Eng Sci 60:3115–3134

    Article  CAS  Google Scholar 

  15. Ersoy O (2020) The effect of dispersion quality of fillers on soundproofing properties of acrylonitrile butadiene styrene/dense filler composites: Barite vs Magnetite. Polym Compos 41:1045–1052

    Article  CAS  Google Scholar 

  16. Goriparthi BK, Naveen PNE, Sankar HR (2021) Performance evaluation of composite gears composed of POM, CNTs, and PTFE. Polym Compos 42:1123–1134

    Article  CAS  Google Scholar 

  17. Zhang JX, Ma JC, Zhang LQ, Zong CY, Xu AH, Zhang YB, Geng B, Zhang SX (2020) Enhanced breakdown strength and suppressed dielectric loss of polymer nanocomposites with BaTiO3 fillers modified by fluoropolymer. RSC Adv 10:7065–7072

    Article  PubMed  PubMed Central  Google Scholar 

  18. Khosravi A, King JA, Jamieson HL, Lind ML (2014) Latex barrier thin film formation on porous substrates. Langmuir 30:13994–14003

    Article  CAS  PubMed  Google Scholar 

  19. Bruno A (2010) Controlled radical (Co)polymerization of fluoromonomers. Macromolecules 43:10163–10184

    Article  Google Scholar 

  20. Fujimori A, Ninomiya N, Masuko T (2008) Structure and mechanical properties in drawn poly(L-lactide)/clay hybrid films. Polym Adv Technol 19:1735–1744

  21. Martin O, Martin AJ, Mondelli C, Mitchell S, Segawa TF, Hauert R, Drouilly C, Curulla-Ferre D, Perez-Ramirez J (2016) Indium oxide as a superior catalyst for methanol synthesis by CO2 hydrogenation. Angew Chem Int Ed 55:6261–6265

    Article  CAS  Google Scholar 

  22. Zhou Y, Guan XF, Zhou H, Ramadoss K, Adam S, Liu HJ, Lee S, Shi J, Tsuchiya M, Fong DD, Ramanathan S (2016) Strongly correlated perovskite fuel cells. Nature 534:231–234

    Article  CAS  PubMed  Google Scholar 

  23. Yang K, Hu LL, Ma XX, Ye SQ, Cheng L, Shi XZ, Li CH, Li YG, Liu Z (2012) Multimodal imaging guided photothermal therapy using functionalized graphene nanosheets anchored with magnetic nanoparticles. Adv Mater 24:1868–1872

    Article  CAS  PubMed  Google Scholar 

  24. Berman D, Deshmukh SA, Sankaranarayanan SKRS, Erdemir A, Sumant AV (2015) Macroscale superlubricity enabled by graphene nanoscroll formation. Science 348:1118–1122

    Article  CAS  PubMed  Google Scholar 

  25. Yang TY, Wei LJ, Jing LY, Liang JF, Zhang XM, Tang M, Monteiro MJ, Chen Y, Wang Y, Gu S, Zhao DY, Yang HQ, Liu J, Lu GQM (2017) Dumbbell-shaped bi-component mesoporous janus solid nanoparticles for biphasic interface catalysis. Angew Chem Int Ed 56:8459–8463

    Article  CAS  Google Scholar 

  26. Kim H, Kawaguchi D, Tanaka K, Seo Y (2018) Fracture mechanism change at a heterogeneous polymer-polymer interface reinforced with in situ graft copolymers. Langmuir 34:11027–11033

    Article  CAS  PubMed  Google Scholar 

  27. Yang F, Wang X, Zhang DQ, Yang J, Luo D, Xu ZW, Wei JK, Wang JQ, Xu Z, Peng F, Li XM, Li RM, Li YL, Li MH, Bai XD, Ding F, Li Y (2014) Chirality-specific growth of single-walled carbon nanotubes on solid alloy catalysts. Nature 510:522–524

    Article  CAS  PubMed  Google Scholar 

  28. Blackburn JL, Ferguson AJ, Cho C, Grunlan JC (2018) Carbon-nanotube-based thermoelectric materials and devices. Adv Mater 30:1704386

    Article  Google Scholar 

  29. Yang Y, Huang QY, Niu LY, Wang DR, Yan C, She YY, Zheng ZJ (2017) Waterproof, ultrahigh areal-capacitance, wearable supercapacitor fabrics. Adv Mater 29:1606679

    Article  Google Scholar 

  30. Thotiyl MMO, Freunberger SA, Peng ZQ, Bruce PG (2013) The carbon electrode in nonaqueous Li–O2 cells. J Am Chem Soc 135:494–500

    Article  Google Scholar 

  31. Hayasaki T, Abiko Y, Almarasy AA, Akasaka S, Fujimori A (2021) Effect of the uniaxial orientation on the polymer/filler nanocomposites using phosphonate-modified single-walled carbon nanotube with hydro- or fluorocarbons. Polym Bull 78:5503–5524

    Article  CAS  Google Scholar 

  32. Hirayama S, Abiko Y, Machida H, Fujimori A (2019) Application of a simple and highly efficient nanoparticle surface modification method to single-walled carbon nanotubes and formation of an interfacial organized film. Thin Solid Films 685:168–179

    Article  CAS  Google Scholar 

  33. Kasahara Y, Guo Y, Tasaki T, Meng Q, Mamun MMA, Iizuka M, Akasaka S, Fujimori A (2018) Nano-dispersion in transparent polymer matrix with high melting temperature contributing to hybridization of heat-resistant organo-modified nanodiamond. Polym Bull 75:4145–4163

    Article  CAS  Google Scholar 

  34. Guo Y, Fukushi K, Hirayama S, Machida H, Meng Q, Akasaka S, Fujimori A (2018) Thermal stability of ordered multi-particle layers of long-chain phosphonate-modified nanodiamond with superior heat-resistance. Colloids Surf A 556:227–238

    Article  CAS  Google Scholar 

  35. Hayasaki T, Yamada Y, Kai X, Almarasy AA, Akasaka S, Fujimori A (2021) Study on the improvement of dispersibility and orientation control of fluorocarbon-modified single-walled carbon nanotubes in a fluorinated polymer matrix. Polym Compos 42:4845–4859

    Article  CAS  Google Scholar 

  36. Page AJ, Saha S, Li HB, Irle S, Morokuma K (2015) Quantum chemical simulation of carbon nanotube nucleation on Al2O3 catalysts via CH4 chemical vapor deposition. J Am Chem Soc 137:9281–9288

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors greatly appreciate the Ministry of Education, Culture, Sports, Science and Technology (MEXT) for providing a Grant-in-Aid for Scientific Research (KAKENHI, C, 21K05180 (A.F.)). In addition, this study was also supported by a fund of the Casio Science Promotion Foundation. Further, authors also thank Mr. Takeyoshi Kato, ZEON Corporation, for the providing of carbon nanotube samples.

Author information

Authors and Affiliations

Authors

Contributions

TH, KX and AAA were involved in data curation, formal analysis, investigation; KH contributed to writing—review and editing; AF was involved in funding acquisition, project administration, supervision, roles/writing—original draft.

Corresponding author

Correspondence to Atsuhiro Fujimori.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 386 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hayasaki, T., Harada, K., Xu, K. et al. Dispersion characteristics of polypropylene/organo-modified single-walled carbon nanotube composites with a long-chain phosphonic acid added as the third dispersant component and their drawn orientation. Polym. Bull. 80, 2413–2435 (2023). https://doi.org/10.1007/s00289-022-04175-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-022-04175-5

Keywords

Navigation