Skip to main content

Advertisement

Log in

Mechanical properties, thermal behavior, miscibility and light stability of the poly(butylene adipate-co-terephthalate)/poly(propylene carbonate)/polylactide mulch films

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Poly(butylene adipate-co-terephthalate) (PBAT) copolyester, which has good processing properties, is a new biodegradable synthetic polymer material in recent years. However, it is not satisfied with the mulch requirements because of its high cost and low mechanical strength. The mulch films of ternary blends including PBAT, polylactide (PLA), and poly(propylene carbonate) (PPC) are successfully prepared by extrusion blending and film blowing. The effect of different blow-up ratios (BUR) on the mechanical of mulch films was investigated. The 64/20/16 wt% PBAT/PPC/PLA mulch film of 3.1 BUR shows good mechanical properties. The tensile strength is as high as 43.0/37.6 MPa (MD/TD) while the elongation at break reaches 160/450% (MD/TD). The addition of PLA improves the strength of the mulch film, and the addition of PPC improves the barrier performance of the mulch film. It demonstrates that the PBAT, PPC, and PLA have partial compatibility from DMA and DSC analysis. After adding high-efficiency hindered amine light stabilizers, the mulch films have good light stability and their elongation at the break still exceeds 100% after 100 h of UV irradiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1.
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Kasirajan S, Ngouajio M (2012) Polyethylene and biodegradable mulches for agricultural applications: a review. Agron Sustain Dev 32(2):501–529

    Article  CAS  Google Scholar 

  2. Steinmetz Z, Wollmann C, Schaefer M, Buchmann C, David J, Tröger J, Muňoz K, Frör O, Ellen G (2016) Plastic mulching in agriculture. Trading short-term agronomic benefits for long-term soil degradation? Sci Total Environ 550:690–705

    Article  CAS  PubMed  Google Scholar 

  3. Sintim HY, Flury M (2017) Is biodegradable plastic mulch the solution to agriculture’s plastic problem? Environ Sci Technol 51(3):1068–1069

    Article  CAS  PubMed  Google Scholar 

  4. Barragán DH, Pelacho AM, Martin-Closas L (2016) Degradation of agricultural biodegradable plastics in the soil under laboratory conditions. Soil Res 54(2):216–224

    Article  Google Scholar 

  5. Miles C, Wallace R, Wszelaki A, Martin J, Cowan J, Walters T, Inglis D (2012) Deterioration of potentially biodegradable alternatives to black plastic mulch in three tomato production regions. HortScience 47(9):1270–1277

    Article  Google Scholar 

  6. Abd El-Rahman KM, Ali SAF, Khalil AI, Kandil S (2020) Influence of poly(butylene succinate) and calcium carbonate nanoparticles on the biodegradability of high density-polyethylene nanocomposites. J Polym Res 27(8):1–21

    Article  Google Scholar 

  7. Ali SFA, Elsad RA, Mansour SA (2021) Enhancing the dielectric properties of compatibilized high-density polyethylene/calcium carbonate nanocomposites using high-density polyethylene-g-maleic anhydride. Polym Bull 78:1393–1405

    Article  CAS  Google Scholar 

  8. Ali SFA (2016) Mechanical and thermal properties of promising polymer composites for food packaging applications. In Iop Conf Ser 137: 012035

  9. El-Rafey E, Walid WM, Syala E, Ezzat AA, Ali SFA (2021) A study on the physical, mechanical, thermal properties and soil biodegradation of HDPE blended with PBS/HDPE-g-MA. Polym Bull online.

  10. Touchaleaume F, Martin-Closas L, Angellier-coussy H, Chevillard A, Cesar G, Gontard N, Gastaldi E (2016) Performance and environmental impact of biodegradable polymers as agricultural mulching films. Chemosphere 144:433–439

    Article  CAS  PubMed  Google Scholar 

  11. Bilck AP, Grossmann MVE, Yamashita F (2010) Biodegradable mulch films for strawberry production. Polym Test 29(4):471–476

    Article  CAS  Google Scholar 

  12. Jia SL, Chen YJ, Yu YL, Han LJ, Zhang HL, Dong LS (2019) Effect of ethylene/butyl methacrylate/glycidyl methacrylate terpolymer on toughness and biodegradation of poly (L-lactic acid). Int J Biol Macromol 127:415–424

    Article  CAS  PubMed  Google Scholar 

  13. Lu JM, Qiu ZB, Yang WT (2007) Fully biodegradable blends of poly(l-lactide) and poly(ethylene succinate): miscibility, crystallization, and mechanical properties. Polymer 48(17):4196–4204

    Article  CAS  Google Scholar 

  14. Jiang L, Wolcott MP, Zhang JW (2006) Study of biodegradable polylactide/poly(butylene adipate-co-terephthalate) blends. Biomacromol 7(1):199–207

    Article  Google Scholar 

  15. Ma P, Cai X, Zhang Y, Wang S, Dong W, Chen M, Lemstra PJ (2014) In-situ compatibilization of poly(lactic acid) and poly(butylene adipate-co-terephthalate) blends by using dicumyl peroxide as a free-radical initiator. Polym Degrad Stab 102:145–151

    Article  CAS  Google Scholar 

  16. Yeh JT, Tsou CH, Huang CY, Chen KN, Wu CS, Chai WL (2010) Compatible and Crystallization properties of poly(lactic acid)/poly(butylene adipate-co-terephthalate) blends. J Appl Polym Sci 116(2):680–687

    CAS  Google Scholar 

  17. Li K, Peng J, Turng LS, Huang HX (2011) Dynamic rheological behavior and morphology of polylactide/poly(butylenes adipate-co-terephthalate) blends with various composition ratios. Adv Polym Tech 30(2):150–157

    Article  CAS  Google Scholar 

  18. Chiu HT, Huang SY, Chen YF, Kuo MT, Chiang TY, Chang CY, Wang YH (2013) Heat treatment effects on the mechanical properties and morphologies of poly (lactic acid)/poly (butylene adipate-co-terephthalate) blends. Int J of Polym Sci 2013:951696

    Article  Google Scholar 

  19. Pietrpsanto A, Scarfato P, Di Maio L, Nobile MR, Incarnato L (2020) Evaluation of the suitability of poly(lactide)/poly(butylene-adipate-co-terephthalate) blown films for chilled and frozen food packaging applications. Polymers 12(4):804

    Article  Google Scholar 

  20. Coban O, Bora MO, Kutluk T, Ozkoc G (2018) Mechanical and thermal properties of volcanic particle filled PLA/PBAT composites. Polym Compos 39:E1500–E1511

    Article  CAS  Google Scholar 

  21. Yu YL, Xu PF, Jia SL, Pan HW, Zhang HL, Wang DM, Dong LS (2019) Exploring polylactide/poly(butylene adipate-co-terephthalate)/rare earth complexes biodegradable light conversion agricultural films. Int J Biol Macromol 127:210–221

    Article  CAS  PubMed  Google Scholar 

  22. Okada M (2002) Chemical syntheses of biodegradable polymers. Prog Polym Sci 27(1):87–133

    Article  CAS  Google Scholar 

  23. Luinstra GA (2008) Poly(propylene carbonate), old copolymers of propylene oxide and carbon dioxide with new interests: catalysis and material properties. Polym Rev 48(1):192–219

    Article  CAS  Google Scholar 

  24. Shi XD, Gan ZH (2007) Preparation and characterization of poly(propylene carbonate)/montmorillonite nanocomposites by solution intercalation. Eur Polym J 43(12):4852–4858

    Article  CAS  Google Scholar 

  25. Zheng F, Mi QH, Zhang K, Xu J (2016) Synthesis and characterization of poly(propylene carbonate)/modified sepiolite nanocomposites. Polym Compos 37(1):21–27

    Article  Google Scholar 

  26. Kijchavengkul T, Auras R, Rubino M, Selke S, Ngouajio M, Fernandez RT (2011) Formulation selection of aliphatic aromatic biodegradable polyester film exposed to UV/solar radiation. Polym Degrad Stab 96(10):1919–1926

    Article  CAS  Google Scholar 

  27. Kijchavengkul T, Auras R, Rubino M, Ngouajio M, Fernandez RT (2008) Assessment of aliphatic-aromatic copolyester biodegradable mulch films. Part I: Field study. Chemosphere 71(5):942–953

    Article  CAS  PubMed  Google Scholar 

  28. Kijchavengkul T, Auras R, Rubino M, Ngouajio M, Fernandez RT (2008) Assessment of aliphatic-aromatic copolyester biodegradable mulch films. Part II: Laboratory simulated conditions. Chemosphere 71(9):1607–1616

    Article  CAS  PubMed  Google Scholar 

  29. Hodgson JL, Coote ML (2010) Clarifying the mechanism of the denisov cycle: How do hindered amine light stabilizers protect polymer coatings from photo-oxidative degradation? Macromolecules 43(10):4573–4583

    Article  CAS  Google Scholar 

  30. Souza PMS, Sommaggio LRD, Marin-Morales MA, Morales AR (2020) PBAT biodegradable mulch films: Study of ecotoxicological impacts using Allium cepa, Lactuca sativa and HepG2/C3A cell culture. Chemosphere 256:126985

    Article  CAS  PubMed  Google Scholar 

  31. Souza PMS, Morales AR, Sanchez EMS, Mei LHI (2018) Study of PBAT photostabilization with ultraviolet absorber in combination with hindered amine light stabilizer and vitamin E, aiming mulching film application. J Polym Environ 26(8):3422–3436

    Article  CAS  Google Scholar 

  32. Su ZZ, Li QY, Liu YJ, Hu GH, Wu CF (2009) Compatibility and phase structure of binary blends of poly(lactic acid) and glycidyl methacrylate grafted poly(ethylene octane). Eur Polym J 45(8):2428–2433

    Article  CAS  Google Scholar 

  33. Wang XY, Pan HW, Jia SL, Cao ZW, Han LJ, Zhang HL, Dong LS (2020) Mechanical properties, crystallization and biodegradation behavior of the polylactide/poly(3-hydroxybutyrate-co-4-hydroxybutyrate)/poly(butylene adipate-co-terephthalate) blown films. Chin J Polym Sci 38(10):1072–1081

    Article  Google Scholar 

  34. Roth CB, McNerny KL, Jager WF, Torkelson JM (2007) (2007) Eliminating the enhanced mobility at the free surface of polystyrene: fluorescence studies of the glass transition temperature in thin bilayer films of immiscible polymers. Macromolecules 40(7):2568–2574

    Article  CAS  Google Scholar 

  35. Factor BJ, Russell TP, Toney MF (1991) Surface-induced ordering of an aromatic polyimide. Phys Rev Lett 66(9):1181–1184

    Article  CAS  PubMed  Google Scholar 

  36. Allen NS (1986) Recent advances in the photooxidation and stabilization of polymers. Chem Soc Rev 15(3):373–404

    Article  CAS  Google Scholar 

  37. Step EN, Turro NJ, Klemchuk PP, Gande ME (1995) Model studies on the mechanism of hals stabilization. Angew Makromol Chem 232:65–83

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Science and Technology Development Plan of Jilin Province (20210203199SF), Science and Technology Services Network Program of Chinese Science Academy (No. KFJ-STS-ZDTP-082), Chinese Science Academy (Changchun Branch) (No. 2020SYHZ0002 and No. 2020SYHZ0047), and the National Science Foundation of Zhejiang Province of China (No. LQY19B040001).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lijing Han or Huiliang Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 23 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Pan, H., Jia, S. et al. Mechanical properties, thermal behavior, miscibility and light stability of the poly(butylene adipate-co-terephthalate)/poly(propylene carbonate)/polylactide mulch films. Polym. Bull. 80, 2485–2501 (2023). https://doi.org/10.1007/s00289-022-04173-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-022-04173-7

Keywords

Navigation