Skip to main content
Log in

Valorization of recycled PET for yarn manufacturing and knitwear fabrics used for apparel applications

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

The world is facing huge energy crises and the creation of new environmentally friendly energy sources is imperative. Due to high strength, durability and low cost, polyester fibers yarn are most frequently used in textile sector for apparel and home textiles applications. The non-biodegradable nature of polyester is harmful for ecosystem. Recycling could be the only solution to reduce the environmental impact of polyester. Here, we developed a new potential method for recycling of wastewater polyester bottles to form its fibers. Single jersey knitted fabric were manufactured from recycled yarns. Physical properties of wastewater bottle based polyester yarns and fabrics such as yarn count, lea strength product, unevenness, elongation, burst strength, shrinkage, air permeability, and pilling were measured via respective instruments. We also developed fabric from the virgin polyester. It was observed that the properties of yarns and fabrics made from recycled polyesters fiber are comparable to that of virgin polyesters fabric. This exploration suggests economic and environmentally friendly solution for using wastewater polyester bottles based fibers for textiles application with comparable properties to that of virgin polyester fabric.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Availability of data and materials

The data of this study are available upon reasonable request.

References

  1. de Sá LC, Oliveira M, Ribeiro F, Rocha TL, Futter MN (2018) Studies of the effects of microplastics on aquatic organisms: what do we know and where should we focus our efforts in the future? Sci Total Environ 645:1029–1039. https://doi.org/10.1016/j.scitotenv.2018.07.207

    Article  CAS  PubMed  Google Scholar 

  2. Li G, Jiang Z, Wang W, Chu Z, Zhang Y, Wang C (2019) Electrospun PAN/MAPBI3 composite fibers for flexible and broadband photodetectors. Nanomaterials. https://doi.org/10.3390/nano9010050

    Article  PubMed  PubMed Central  Google Scholar 

  3. Thulasisingh A, Kumar K, Yamunadevi B, Poojitha N, SuhailMadharHanif S, Kannaiyan S (2021) Biodegradable packaging materials. Polym Bull. https://doi.org/10.1007/s00289-021-03767-x

    Article  Google Scholar 

  4. Krishnan PSG, Kulkarni ST (2008) Polyesters and polyamides. Woodhead Publishing Limited, Chennai

    Google Scholar 

  5. Truscott L, Pepper LR (2020) Preferred fiber and materials market report 2020

  6. Mansour SH, Ikladious NE (2002) Depolymerization of poly(ethylene terephthalate) wastes using 1,4-butanediol and triethylene glycol. Polym Test 21(5):497–505. https://doi.org/10.1016/S0142-9418(01)00115-5

    Article  CAS  Google Scholar 

  7. Ahmad I, Mosadeghzad Z, Daik R, Ramli A (2008) The effect of alkali treatment and filler size on the properties of sawdust/UPR composites based on recycled PET wastes. J Appl Polym Sci 109:3651–3658. https://doi.org/10.1002/app

    Article  CAS  Google Scholar 

  8. Mosadeghzad Z, Ahmad I, Daik R, Ramli A, Jalaludin Z (2009) Preparation and properties of acacia sawdust/UPR composite based on recycled PET. Malays Polym J 4(1):30–41

    Google Scholar 

  9. Suh DJ, Park OO, Yoon KH (2000) The properties of unsaturated polyester based on the glycolyzed poly(ethylene terephthalate) with various glycol compositions. Polymer (Guildf) 41(2):461–466. https://doi.org/10.1016/S0032-3861(99)00168-8

    Article  CAS  Google Scholar 

  10. Vossen A, Ruesink M (2013) Recycling plastic bottles and flasks, Brussels

  11. Çit I, Sinaǧ A, Yumak T, Uçar S, Misirlioǧlu Z, Canel M (2010) Comparative pyrolysis of polyolefins (PP and LDPE) and PET. Polym Bull 64(8):817–834. https://doi.org/10.1007/s00289-009-0225-x

    Article  CAS  Google Scholar 

  12. Esi B, Baykal PD (2020) Investigation of tensile strength and elongation properties of chenille upholstery fabrics including recycling polyester yarns. J Eng Fiber Fabr 15:1–10. https://doi.org/10.1177/1558925020916040

    Article  CAS  Google Scholar 

  13. Ronkay F, Molnar B, Gere D, Czigany T (2021) Plastic waste from marine environment: demonstration of possible routes for recycling by different manufacturing technologies. Waste Manag 119:101–110. https://doi.org/10.1016/j.wasman.2020.09.029

    Article  CAS  PubMed  Google Scholar 

  14. Shen L, Worrell E, Patel MK (2010) Open-loop recycling: a LCA case study of PET bottle-to-fibre recycling. Resour Conserv Recycl 55(1):34–52. https://doi.org/10.1016/j.resconrec.2010.06.014

    Article  Google Scholar 

  15. Koo HJ, Chang GS, Kim SH, Hahm WG, Park SY (2013) Effects of recycling processes on physical, mechanical and degradation properties of PET yarns. Fibers Polym 14(12):2083–2087

    Article  CAS  Google Scholar 

  16. Lipik VT, Abadie MJM (2007) Polyethylene terephthalate chemical recycling in the melted state. Polym Plast Technol Eng 46(7):695–701. https://doi.org/10.1080/15583720701271518

    Article  CAS  Google Scholar 

  17. Kostov G, Atanassov A, Kiryakova D (2013) Preparation and characterization of fibers of waste and fresh polyethylene terephtalate and mixtures of them. Fibers Polym 14(2):216–222

    Article  CAS  Google Scholar 

  18. Lee JH, Lim KS, Hahm WG, Kim SH (2013) Properties of recycled and virgin poly(ethylene terephthalate) blend fibers. J Appl Polym Sci 128(2):1250–1256. https://doi.org/10.1002/app.38502

    Article  CAS  Google Scholar 

  19. Farahani GN, Ahmad I, Mosadeghzad Z (2012) Effect of fiber content, fiber length and alkali treatment on properties of kenaf fiber/UPR Composites based on recycled PET wastes. Polym Plast Technol Eng 51(6):634–639. https://doi.org/10.1080/03602559.2012.659314

    Article  CAS  Google Scholar 

  20. Pracella M, Chionna D, Ishak R, Galeski A (2004) Recycling of PET and polyolefin based packaging materials by reactive blending. Polym Plast Technol Eng 43(6):1711–1722. https://doi.org/10.1081/PPT-200040075

    Article  CAS  Google Scholar 

  21. Öztürk Y, Güçlü G (2004) Unsaturated polyester resins obtained from glycolysis products of waste PET. Polym Plast Technol Eng 43(5):1539–1552. https://doi.org/10.1081/PPT-200030272

    Article  CAS  Google Scholar 

  22. Pelisser F, Montedo ORK, Gleize PJP, Roman HR (2012) Mechanical properties of recycled PET fibers in concrete. Mater Res 15(4):679–686. https://doi.org/10.1590/S1516-14392012005000088

    Article  CAS  Google Scholar 

  23. Park SH, Kim SH (2014) Poly (ethylene terephthalate) recycling for high value added textiles. Fash Text 1(1):1–17. https://doi.org/10.1186/s40691-014-0001-x

    Article  Google Scholar 

  24. Barman NK, Bhattacharya SS, Mandot AA. Influence of blending proportion on properties of melt spun monofilaments produced from virgin PET and recycled PET blend

  25. Majumdar A, Shukla S, Singh AA, Arora S (2020) Circular fashion: properties of fabrics made from mechanically recycled poly-ethylene terephthalate (PET) bottles. Resour Conserv Recycl 161:104915. https://doi.org/10.1016/j.resconrec.2020.104915

    Article  Google Scholar 

  26. Seval U (2021) The bursting strength properties of knitted fabrics containing recycled polyester fiber. J Text Inst 112(12):1998–2003. https://doi.org/10.1080/00405000.2020.1862490

    Article  CAS  Google Scholar 

  27. Sadeghi B, Marfavi Y, AliAkbari R, Kowsari E, BorborAjdari F, Ramakrishna S (2021) Recent studies on recycled PET Fibers: production and applications: a review. Mater Circ Econ. https://doi.org/10.1007/s42824-020-00014-y

    Article  Google Scholar 

  28. Telli A, Özdil N (2015) Effect of recycled PET fibers on the performance properties of knitted fabrics. J Eng Fiber Fabr 10(2):47–60. https://doi.org/10.1177/155892501501000206

    Article  Google Scholar 

  29. Hassan T et al (2020) The assessment of finishing properties on the mass per unit area, pilling, bursting strength, and wicking behavior of polyester weft-knitted jersey fabric. Coatings. https://doi.org/10.3390/COATINGS10080723

    Article  Google Scholar 

  30. Gita B, Lekeckas K, Urbelis V (2011) Pilling resistance of knitted fabrics. Mater Sci 17(3):297–301. https://doi.org/10.5755/j01.ms.17.3.597

    Article  Google Scholar 

  31. Chowdhary U (2018) Bursting strength and extension for jersey, interlock and pique knits. Trends Text Eng Fash Technol 1(2):19–27. https://doi.org/10.31031/tteft.2018.01.000506

    Article  Google Scholar 

  32. Uyanık S (2019) A study on the suitability of which yarn number to use for recycle polyester fiber. J Text Inst 110(7):1012–10331. https://doi.org/10.1080/00405000.2018.1550889

    Article  CAS  Google Scholar 

  33. ASTM D1907-07 Standard test method for linear density of yarn (yarn number) by the skein method

  34. ASTM D 1425-96 Standard test method for unevenness of textile strands using capacitance testing equipment

  35. ASTM D2256/D2256M-21 Standard test method for tensile properties of yarns by the single-strand method

  36. American Society for Testing and Materials (2013) ASTM D3776 Standard test methods for mass per unit area (weight) of fabric

  37. ISO 12945-1:2020 (en) Textiles—Determination of fabric propensity to surface pilling, fuzzing or matting—Part 1: Pilling box method

  38. AATCC 195-2011E2(2017)E3

  39. Demiroz Gun A, Oner E (2019) Investigation of the quality properties of open-end spun recycled yarns made from blends of recycled fabric scrap wastes and virgin polyester fibre. J Text Inst 110(11):1569–1579. https://doi.org/10.1080/00405000.2019.1608620

    Article  CAS  Google Scholar 

  40. Hussain U, Irshad S, Anam W, Abbasi H, Ahmed F, Jabbar A (2015) Effect of different conditioning methods on the properties of hosiery yarn and knitted fabric. J Eng Fiber Fabr 10(3):12–19. https://doi.org/10.1177/155892501501000302

    Article  CAS  Google Scholar 

  41. Quaynor M, Takahasi L, Nakajima H (1999) Effects of laundering on the surface properties and dimensional of plain knitted fabrics. Text Res J 756(1985):28–35

    Google Scholar 

  42. Perera HAAE, Lanarolle WDG (2020) Comparative study on the thermal shrinkage behaviour of polyester yarn and its plain knitted fabrics. J Text Inst 111(12):1755–1765. https://doi.org/10.1080/00405000.2020.1729650

    Article  CAS  Google Scholar 

  43. AkterSmriti S (2015) An exploration on pilling attitudes of cotton polyester blended single jersey knit fabric after mechanical singeing. Sci Innov 3(1):18. https://doi.org/10.11648/j.si.20150301.12

    Article  Google Scholar 

  44. Bhattacharya SS, Ajmeri JR (2014) Air permeability of knitted fabrics made from regenerated cellulosic fibres. Int J Eng Res 10(7):16–22

    Google Scholar 

  45. Mavruz S, Ogulata RT (2011) Investigation of air permeability of single jersey fabrics with different relaxation states. J Text Inst 102(1):57–64. https://doi.org/10.1080/00405000903474907

    Article  CAS  Google Scholar 

  46. Kalkanci M, M. Si̇Necen, G. Kurumer, (2018) Prediction of dimensional change in finished fabric through artificial neural networks. Tekst Konfeksiyon 28(1):43–51

    Google Scholar 

  47. Cloud RM, Cao W, Song G (2013) Functional finishes to improve the comfort and protection of apparel. In: Advances in the dyeing and finishing of technical textiles. Elsevier, pp 258–279

Download references

Funding

This research received no external funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdul Salam.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, S.U., Hassan, T., Wasim, M. et al. Valorization of recycled PET for yarn manufacturing and knitwear fabrics used for apparel applications. Polym. Bull. 80, 2779–2799 (2023). https://doi.org/10.1007/s00289-022-04172-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-022-04172-8

Keywords

Navigation