Skip to main content
Log in

Effective removal of ionic dyes from aqueous media using modified karaya gum–PVA semi-interpenetrating network system

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

A semi-interpenetrating network consisting of karaya gum-graft-polyacrylamide and poly(vinyl alcohol) has been developed as an adsorbent material for dye removal applications. The system was made by microwave irradiation of the aqueous mixture of karaya gum, acrylamide, N,N′-methylenebisacrylamide, and poly (vinyl alcohol); and was characterized by FTIR, TGA, SEM, and XRD techniques. It was evaluated as an adsorbent material for removal of ionic dyes from aqueous solutions. Appreciably high adsorption capacity is exhibited by the material towards cationic dyes as indicated by values of maximum adsorption capacity of 82.28, 72.94, 48.75 and 34.67 mg/g towards adsorption of cationic dyes, namely methylene blue (MB), crystal violet (CV), rhodamine B (Rh B), and toluidine blue (TB). Relatively low value of 21.66 mg/g is obtained for anionic dye indigo carmine (IC). The kinetic data of dye adsorption best fitted with the pseudo-first-order kinetic model with R2 values of 0.979, 0.989, 0.946, 0.991, and 0.986 for TB, MB, CV, Rh B and IC, respectively. The isotherm data fit well with the Freundlich model with R2 values of 0.986, 0.955, 0.990, 0.980 and 0.993 for TB, MB, CV, Rh B, and IC, respectively, indicating the heterogeneous and multilayer adsorption. The thermodynamic studies showed dye adsorption to be an exothermic and spontaneous process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

APS:

Ammonium persulfate

CV:

Crystal violet

FTIR:

Fourier transform infrared spectroscopy

IC:

Indigo carmine

IPN:

Interpenetrating network

KG:

Karaya gum

(KG-g-PAAm)–PVA:

(Karaya gum-graft-polyacrylamide)–poly (vinyl alcohol)

MB:

Methylene blue

MBA:

N,N’-Methylenebisacrylamide

PAAm:

Polyacrylamide

PVA:

Poly (vinyl alcohol)

Rh B:

Rhodamine B

SEM:

Scanning electron microscopy

TB:

Toluidine blue

TGA:

Thermogravimetric analysis

XRD:

X-ray diffraction

References

  1. Petersen L, Heynen M, Pellicciotti F (2016) Freshwater resources: past, present, future. International encyclopedia of geography: people, the earth, environment and technology. Wiley-Blackwell, London. https://doi.org/10.1002/9781118786352.wbieg0712

    Book  Google Scholar 

  2. Nazir MA, Yasar A, Bashir MA, Siyal SH, Najam T, Javed MS, Ahmad K, Hussain S, Anjum S, Hussain E, Shah SSA, Rehman A (2020) Quality assessment of the noncarbonated-bottled drinking water: comparison of their treatment techniques. Int J Environ Anal Chem 100:1–12. https://doi.org/10.1080/03067319.2020.1846732

    Article  CAS  Google Scholar 

  3. Ayub A, Irfan A, Raza ZA, Abbas M, Muhammad A, Ahmad K, Munwar A (2021) Development of poly(1-vinylimidazole)-chitosan composite sorbent under microwave irradiation for enhanced uptake of Cd (II) ions from aqueous media. Polym Bull 159:1–21. https://doi.org/10.1007/s00289-020-03523-7

    Article  CAS  Google Scholar 

  4. Naseem HA, Aziz T, Shah H, Ahmad K, Parveen S, Ashfaq M (2020) Rational synthesis and characterization of medicinal phenyl diazenyl-3-hydroxy-1H-inden-1-one azo derivatives and their metal complexes. J Mol Struct 1227:129574. https://doi.org/10.1016/j.molstruc.2020.129574

    Article  CAS  Google Scholar 

  5. Shah H, Ahmad K, Naseem HA, Parveen S, Ashfaq M, Rauf A, Aziz T (2021) Water stable graphene oxide metal-organic frameworks composite (ZIF-67@GO) for efficient removal of malachite green from water. Food Chem Toxicol 154:112312. https://doi.org/10.1016/j.fct.2021.112312

    Article  CAS  Google Scholar 

  6. Ahmad K, Shah H, Parveen S, Aziz T, Naseem HA, Ashfaq M, Rauf A (2021) Metal organic framework (KIUB-MOF-1) as efficient adsorbent for cationic and anionic dyes from brackish water. J Mol Struct 1242:130898. https://doi.org/10.1016/j.molstruc.2021.130898

    Article  CAS  Google Scholar 

  7. Ahmad K, Shah H, Nasim HA, Ayub A, Ashfaq M, Rauf A, Shah SSA, Ahmad MM, Nawaz H, Hussain E (2021) Synthesis and characterization of water stable polymeric metallo organic composite (PMOC) for the removal of arsenic and lead from brackish water. Toxin Rev. https://doi.org/10.1080/15569543.2021.1919902

    Article  Google Scholar 

  8. Ghaly A, Ananthashankar R, Alhattab M, Ramakrishnan V (2014) Production, characterization, and treatment of textile effluents: a critical review. J Chem Eng Process Technol 5:1–18

    Google Scholar 

  9. Moussavi G, Mahmoudi M (2009) Removal of azo and anthraquinone reactive dyes from industrial wastewaters using MgO nanoparticles. J Hazard Mater 168:806–812. https://doi.org/10.1016/j.jhazmat.2009.02.097

    Article  CAS  PubMed  Google Scholar 

  10. Liu RR, Tian Q, Yang B, Chen J (2010) Hybrid anaerobic baffled reactor for treatment of desizing wastewater. Int J Environ Sci Technol 7:111–118. https://doi.org/10.1007/BF03326122

    Article  CAS  Google Scholar 

  11. Yaseen D, Scholz M (2019) Textile dye wastewater characteristics and constituents of synthetic effluents: a critical review. Int J Environ Sci Technol 16:1193–1226. https://doi.org/10.1007/s13762-018-2130-z

    Article  CAS  Google Scholar 

  12. Al-Momani F, Touraud E, Degorce-Dumas JR, Roussy J, Thomas O (2002) Biodegradability enhancement of textile dyes and textile wastewater by VUV photolysis. J Photochem Photobiol A: Chem 153:191–197

    Article  CAS  Google Scholar 

  13. Samsami S, Mohamadi M, Sarrafzadeha M, Rene ER, Firoozbahr M (2020) Recent advances in the treatment of dye-containing wastewater from textile industries: overview and perspectives. Process Saf Environ 143:138–163. https://doi.org/10.1016/j.psep.2020.05.034

    Article  CAS  Google Scholar 

  14. Bhattacharyya R, Ray SK (2015) Adsorption of industrial dyes by semi-IPN hydrogels of acrylic copolymers and sodium alginate. J Ind Eng Chem 22:92–102. https://doi.org/10.1016/j.jiec.2014.06.029

    Article  CAS  Google Scholar 

  15. Mittal H, Babu R, Dabbawala AA, Stephen S, Alhassan SM (2020) Zeolite-Y incorporated karaya gum hydrogel composites for highly effective removal of cationic dyes. Colloids Surf A: Physicochem Eng Asp 586:124161. https://doi.org/10.1016/j.colsurfa.2019.124161

    Article  CAS  Google Scholar 

  16. Mittal H, Babu R, Alhassan SM (2020) Utilization of gum xanthan based superporous hydrogels for the effective removal of methyl violet from aqueous solution. Int J Biol Macromol 143:413–423. https://doi.org/10.1016/j.ijbiomac.2019.11.008

    Article  CAS  PubMed  Google Scholar 

  17. Uzum OB, Karadag E (2011) Dye sorption and water uptake properties of crosslinked acrylamide/sodium methacrylate copolymers and semi-interpenetrating polymer networks composed of PEG. Sep Sci Technol 46:489–499. https://doi.org/10.1080/01496395.2010.513697

    Article  CAS  Google Scholar 

  18. Arun Krishna K, Vishalakshi B (2017) Gellan gum-based novel composite hydrogel: evaluation as adsorbent for cationic dyes. J Appl Polym Sci 134:45527–45534. https://doi.org/10.1002/app.45527

    Article  CAS  Google Scholar 

  19. Mittal H, Alhassan SM, Ray SS (2018) Efficient organic dye removal from wastewater by magnetic carbonaceous adsorbent prepared from corn starch. J Environ Chem Eng 6:7119–7131. https://doi.org/10.1016/j.jece.2018.11.010

    Article  CAS  Google Scholar 

  20. Kumar V, Rehani V, Singh B, Kaith S (2018) Synthesis of a biodegradable interpenetrating polymer network of Av-cl-poly(AA-ipn-AAm) for malachite green dye removal: kinetics and thermodynamic studies. RSC Adv 8:41920–41937. https://doi.org/10.1039/C8RA07759B

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Bhattacharyya R, Ray SK (2014) Enhanced adsorption of synthetic dyes from aqueous solution by a semi-interpenetrating network hydrogel based on starch. J Ind Eng Chem 20:3714–3725. https://doi.org/10.1016/j.jiec.2013.12.071

    Article  CAS  Google Scholar 

  22. Jeon YS, Lei J, Kim J (2008) Dye adsorption characteristics of alginate/polyaspartate hydrogels. J Ind Eng Chem 14:726–731. https://doi.org/10.1016/J.JIEC.2008.07.007

    Article  CAS  Google Scholar 

  23. Singh B, Sharma N (2009) Mechanistic implication for cross-linking in sterculia-based hydrogels and their use in GIT drug delivery. Biomacromol 10:2515–2532. https://doi.org/10.1021/bm9004645

    Article  CAS  Google Scholar 

  24. Padil VVT, Nguyen NHA, AlenaŠevcR HM (2015) Fabrication, characterization, and antibacterial properties of electrospun membrane composed of gum karaya, polyvinyl alcohol, and silver nanoparticles. J Nanomater 2015:1–10. https://doi.org/10.1155/2015/750726

    Article  CAS  Google Scholar 

  25. Baker MI, Walsh SP, Schwartz Z, Boylan BD (2012) A review of polyvinyl alcohol and its uses in cartilage and orthopedic applications. J Biomed Mater Res Part B Appl Biomater 100B:1451–1457. https://doi.org/10.1002/jbm.b.32694

    Article  CAS  Google Scholar 

  26. Krishnappa PB, Badalamoole V (2019) Karaya gum-graft-poly(2-(dimethylamino) ethyl methacrylate) gel: an efficient adsorbent for removal of ionic dyes from water. Int J Biol Macromol 122:997–1007. https://doi.org/10.1016/j.ijbiomac.2018.09.038

    Article  CAS  Google Scholar 

  27. Siddaiaha T, Ojhaa P, Kumara NOGV, Ramu C (2018) Structural, optical, and thermal characterizations of PVA/MAA: EA polyblend films. Mater Res 21:987–998. https://doi.org/10.1590/1980-5373-MR-2017-0987

    Article  Google Scholar 

  28. Hemvichian K, Chanthawong A, Suwanmala P (2014) Synthesis and characterization of superabsorbent polymer prepared by radiation-induced graft copolymerization of acrylamide onto carboxymethyl cellulose for controlled release of agrochemicals. Radiat Phys Chem 103:167–171. https://doi.org/10.1016/j.radphyschem.2014.05.064

    Article  CAS  Google Scholar 

  29. Sethi S, Kaith BS, Kaur M, Sharma N, Khullar S (2019) Study of a cross-linked hydrogel of karaya gum and starch as a controlled drug delivery system. J Biomater Sci- Polym Ed 30:1687–1708. https://doi.org/10.1080/09205063.2019.1659710

    Article  CAS  PubMed  Google Scholar 

  30. Pique TM, Pe’rez CJ, Alvarez VA, Va’zquez A (2014) Water soluble nanocomposite films based on poly(vinyl alcohol) and chemically modified montmorillonites. J Compos Mater 48:545–553. https://doi.org/10.1177/0021998313476322

    Article  CAS  Google Scholar 

  31. Liu D, Li J, Sun F, Xiao R, Guo Y, Song J (2014) Liquid crystal microphase separation of cellulose nanocrystals in wet-spun PVA composite fibres. RSC Adv 4:30784–30789. https://doi.org/10.1039/C4RA04063E

    Article  CAS  Google Scholar 

  32. Aziz SB, Abdulwahid RT, Rasheed MA, Abdullah OG, Ahmed HM (2017) Polymer blending as a novel approach for tuning the SPR peaks of silver nanoparticles. Polymers 9:486–498. https://doi.org/10.3390/polym9100486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Briscoe B, Luckham P, Zhu S (2000) The effects of hydrogen bonding upon the viscosity of aqueous poly(vinyl alcohol) solutions. Polymer 41:3851–3860. https://doi.org/10.1016/S0032-3861(99)00550-9

    Article  CAS  Google Scholar 

  34. Singh S, Srivastava SK, Singh DK (2014) Hydrogen bonding patterns in different acrylamide–water clusters: micro solvation probed by micro-Raman spectroscopy and DFT calculations. RSC Adv 4:1761–1774. https://doi.org/10.1039/C3RA42707B

    Article  CAS  Google Scholar 

  35. Schott H (1992) Swelling kinetics of polymers. J Macromol Sci B 31:1–9

    Article  CAS  Google Scholar 

  36. Ritger PL, Peppas NA (1987) A simple equation for description of solute release I. Fickian and non-fickian release from non-swellable devices in the form of slabs, spheres, cylinders, or discs. J Control Release 5:23–36. https://doi.org/10.1016/0168-3659(87)90034-4

    Article  CAS  Google Scholar 

  37. Karadag E, Kundakci S (2013) Water and dye uptake studies of acrylamide/4-styrenesulfonic acid sodium salt copolymers and semi-interpenetrating polymer networks composed of gelatin and/or PVA. Adv Polym Technol 32:531–544

    Article  Google Scholar 

  38. Dixit A, Bag DS, Kalra SJS (2017) Synthesis of strong and stretchable double network (DN) hydrogels of PVA-borax and P(AM-co-HEMA) and study of their swelling kinetics and mechanical properties. Polymer 119:263–273. https://doi.org/10.1016/j.polymer.2017.05.002

    Article  CAS  Google Scholar 

  39. Kulal P, Krishnappa PB, Badalamoole V (2021) Development of gum acacia based magnetic nanocomposite adsorbent for wastewater treatment. Polym Bull 154:1–16. https://doi.org/10.1007/s00289-021-03909-1

    Article  CAS  Google Scholar 

  40. Klaus H (2003) Industrial dyes: chemistry, properties, applications. Wiley, Germany

    Google Scholar 

  41. Fang Y, Zhou A, Yang W, Araya T, Huang Y, Zhao P, Johnson D, Wang J, Ren ZJ (2018) Complex Formation via hydrogen bonding between rhodamine B and montmorillonite in aqueous solution. Sci 8:229–239

    Google Scholar 

  42. Sandeman SR, Gun’ko VM, Bakalinska OM, Howell CA, Zheng Y, Kartel MT, Phillips GJ, Mikhalovsky SV (2011) Desorption of anionic and cationic dyes by activated carbons, PVA hydrogels, and PVA/AC composite. J Colloid Interface Sci 358:582–592. https://doi.org/10.1016/j.jcis.2011.02.031

    Article  CAS  PubMed  Google Scholar 

  43. Ghorai S, Sarkar A, Raoufi M, Panda AB, Schonherr H, Pal S (2014) Enhanced removal of methylene blue and methyl violet dyes from aqueous solution using a nanocomposite of hydrolyzed polyacrylamide grafted xanthan gum and incorporated nanosilica. ACS Appl Mater Interfaces 6:4766–4777. https://doi.org/10.1021/am4055657

    Article  CAS  PubMed  Google Scholar 

  44. Sharma G, Kumar A, Naushad M, García-Peñas A, AlMuhtaseb AH, Ghfar AA, Sharma V, Ahamad T, Stadler FJ (2018) Fabrication and characterization of Gum arabic-cl-poly(acrylamide) nanohydrogel for effective adsorption of crystal violet dye. Carbohyd Polym 202:444–453. https://doi.org/10.1016/j.carbpol.2018.09.004

    Article  CAS  Google Scholar 

  45. Deng JH, Luo J, Mao YL, Lai S, Gong YN, Zhong DC, Lu TB (2020) π-π stacking interactions: non-negligible forces for stabilizing porous supramolecular frameworks. Sci Adv 6:1–12. https://doi.org/10.1126/sciadv.aax9976

    Article  CAS  Google Scholar 

  46. Rápó E, Tonk S (2021) Factors affecting synthetic dye adsorption; desorption studies: a review of results from the last five years (2017–2021). Molecules 26:5419. https://doi.org/10.3390/molecules26175419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Lagergren S (1898) About the theory of so-called adsorption of soluble substances. Handlingar 24:1–39

    Google Scholar 

  48. Ho YS, McKay G (1999) Pseudo-second order model for sorption processes. Process Biochem 34:451–465. https://doi.org/10.1016/S0032-9592(98)00112-5

    Article  CAS  Google Scholar 

  49. Freundlich H (1926) Colloid and capillary chemistry. J Soc Chem Ind 45:797–798. https://doi.org/10.1002/jctb.5000454407

    Article  Google Scholar 

  50. Ayawei N, Ebelegi AN, Wankasi D (2017) Modelling and interpretation of adsorption isotherms. J Chem 2017:1–11. https://doi.org/10.1155/2017/303981

    Article  Google Scholar 

  51. Tempkin MI, Pyzhev V (1940) Kinetics of ammonia synthesis on promoted iron catalyst. Acta Phys Chem 12:327–356

    Google Scholar 

  52. Patel YN, Patel MP (2012) Novel cationic poly [AAm/NVP/DAPB] hydrogels for removal of some textile anionic dyes from aqueous solution. J Macromol Sci A 49:490–501. https://doi.org/10.1080/10601325.2012.676915

    Article  CAS  Google Scholar 

  53. Hall KR, Eagleton LC, Acrivos A, Vermeulen T (1966) Pore- and solid-diffusion kinetics in fixed-bed adsorption under constant-pattern conditions. Ind Eng Chem Fundam 5:212–223. https://doi.org/10.1021/i160018a011

    Article  CAS  Google Scholar 

  54. Ashraf MW, Abulibdeh N, Salam A (2019) Adsorption studies of textile dye (chrysoidine) from aqueous solutions using activated sawdust. Int J Chem Eng 2019:1–8. https://doi.org/10.1155/2019/9728156

    Article  CAS  Google Scholar 

  55. Abramian L, El-Rassy H (2009) Adsorption kinetics and thermodynamics of azo-dye orange II onto highly porous titania aerogel. Chem Eng J 150:403–410. https://doi.org/10.1016/j.cej.2009.01.019

    Article  CAS  Google Scholar 

  56. Mittal H, Ray SS (2016) A study on the adsorption of methylene blue onto gum ghatti/TiO2 nanoparticles-based hydrogel nanocomposite. Int J Biol Macromol 88:66–80. https://doi.org/10.1016/j.ijbiomac.2016.03.032

    Article  CAS  PubMed  Google Scholar 

  57. Mittal H, Alili AA, Alhassan SM (2020) High efficiency removal of methylene blue dye using k-carrageenan-poly(acrylamide-co-methacrylic acid)/ AQSOA-Z05 zeolite hydrogel composites. Cellulose 27:8269–8285. https://doi.org/10.1007/s10570-020-03365-6

    Article  CAS  Google Scholar 

  58. Feira JMC, Klein JM, Forte MMC (2018) Ultrasound-assisted synthesis of polyacrylamide-grafted sodium alginate and its application in dye removal. Polímeros 28:139–146. https://doi.org/10.1590/0104-1428.11316

    Article  Google Scholar 

  59. Lafi R, Rezma S, Hafiane A (2014) Removal of toluidine blue from aqueous solution using orange peel waste (OPW). Desalin Water Treat 56:2754–2765. https://doi.org/10.1080/19443994.2014.982962

    Article  CAS  Google Scholar 

  60. Patel H, Vashi RT (2010) A study on removal of toluidine blue from aqueous solution by adsorption on to neem leaf powder. Int J Chem Mol Eng 4:674–680. https://doi.org/10.5281/zenodo.1057881

    Article  Google Scholar 

  61. Bretanha MS, Dotto GL, Vaghetti JCP, Dias SLP, Lima EC, Pavan FA (2016) Giombo persimmon seed (GPS) an alternative adsorbent for the removal toluidine blue dye from aqueous solutions. Desalin Water Treat 57(58):28474–32848

    Article  CAS  Google Scholar 

  62. Guo L, Li G, Liu J, Ma S, Zhang J (2011) Kinetic and equilibrium studies on adsorptive removal of toluidine blue by water-insoluble starch sulphate. J Chem Eng Data 56:1875–1881. https://doi.org/10.1021/je100891b|

    Article  CAS  Google Scholar 

  63. Mittal H, Maity A, Ray SS (2016) Gum karaya based hydrogel nanocomposites for the effective removal of cationic dyes from aqueous solutions. Appl Surf Sci 364:917–930. https://doi.org/10.1016/j.apsusc.2015.12.241

    Article  CAS  Google Scholar 

  64. Mittal H, Kumar V, Alhassan SM, Ray SS (2018) Modification of gum ghatti via grafting with acrylamide and analysis of its flocculation, adsorption, and biodegradation properties. Int J Biol Macromol 114:283–294. https://doi.org/10.1016/j.ijbiomac.2018.03.131

    Article  CAS  PubMed  Google Scholar 

  65. Hayeeye F, Sattar M, Chinpa W, Sirichote O (2017) Kinetics and thermodynamics of rhodamine B adsorption by gelatin/activated carbon composite beads. Colloids Surf A: Physicochem Eng Asp 513:259–266. https://doi.org/10.1016/j.colsurfa.2016.10.052

    Article  CAS  Google Scholar 

  66. Al-Mubaddel FS, Haider S, Aijaz MO, Haider A, Kamal T, Almasry WA, Javid M, Khan SU (2017) Preparation of the chitosan/polyacrylonitrile semi-IPN hydrogel via glutaraldehyde vapours for the removal of rhodamine B dye. Polym Bull 74:1535–1551. https://doi.org/10.1007/s00289-016-1788-y

    Article  CAS  Google Scholar 

  67. Mittal H, Alili A, Morajkar PP, Alhassan SM (2021) Graphene oxide crosslinked hydrogel nanocomposites of xanthan gum for the adsorption of crystal violet dye. J Mol Liq 323:115034. https://doi.org/10.1016/j.molliq.2020.115034

    Article  CAS  Google Scholar 

  68. Mahdavinia GR, Aghaie H, Sheykhloie H, Vardini MT, Etemadi H (2013) Synthesis of CarAlg/MMt nanocomposite hydrogels and adsorption of cationic crystal violet. Carbohydr Polym 98:358–365. https://doi.org/10.1016/j.carbpol.2013.05.096

    Article  CAS  PubMed  Google Scholar 

  69. Pourjavadi A, Hosseini SH, Seidi F, Soleyman R (2013) Magnetic removal of crystal violet from aqueous solutions using polysaccharide-based magnetic nanocomposite hydrogels. Polym Int 62:1038–1044. https://doi.org/10.1002/pi.4389

    Article  CAS  Google Scholar 

  70. Fatombi JK, Idohou EA, Osseni SA, Agani I, Neumeyer D, Verelst M, Mauricot R, Aminou T (2019) Adsorption of indigo carmine from aqueous solution by chitosan and chitosan/activated carbon composite: kinetics, isotherms, and thermodynamics studies. Fibers Polym 20:1820–1832. https://doi.org/10.1007/s12221-019-1107-y

    Article  CAS  Google Scholar 

  71. Preetha BK, Badalamoole V (2019) Modification of karaya gum by graft copolymerization for effective removal of anionic dyes. Sep Sci Technol 54:2638–2652. https://doi.org/10.1080/01496395.2018.1549079

    Article  CAS  Google Scholar 

  72. Gopi S, Balakrishnan P, Pius A, Thomas S (2017) Chitin nanowhisker (ChNW)-functionalized electrospun PVDF membrane for enhanced removal of indigo carmine. Carbohydr Polym 165:115–122. https://doi.org/10.1016/j.carbpol.2017.02.046

    Article  CAS  PubMed  Google Scholar 

  73. Zauro SA, Badalamoole V (2017) Synthesis of locust bean gum-based terpolymer bentonite composite: evaluation for indigo carmine adsorption. Int J Adv Chem 5:61–69. https://doi.org/10.14419/ijac.v5i2.7930

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vishalakshi Badalamoole.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krishnappa, P.B., Kodoth, A.K., Kulal, P. et al. Effective removal of ionic dyes from aqueous media using modified karaya gum–PVA semi-interpenetrating network system. Polym. Bull. 80, 2553–2584 (2023). https://doi.org/10.1007/s00289-022-04169-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-022-04169-3

Keywords

Navigation