Skip to main content
Log in

Fabrication of antimicrobial electrospun mats using polyvinyl alcohol–zinc oxide blends

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Polyvinyl alcohol (PVA) is a low-cost biocompatible polymer with potential applications in the textile industry. Similarly, zinc oxide (ZnO) is a unique material that exhibits semiconducting, optical, piezoelectric, pyroelectric, and antibacterial properties. Electrospinning is a technique that allows the formation of nano- to micro-sized fibers. Therefore, the development of ZnO-containing PVA fibers using electrospinning is a useful proposition. In this work, freeze-dried ZnO powder and as-precipitated ZnO suspension obtained from a novel flow synthesis methodology were used. Varying concentrations of ZnO were then used to obtain PVA/ZnO electrospun fibrous mats. Synthesized ZnO was assessed for phase purity using X-ray diffraction. The as-prepared composite nanofibers were characterized using Fourier transform infra-red spectroscopy and scanning electron microscopy. Tensile properties of PVA/ZnO mats were also measured. It is herein shown that antibacterial fibrous PVA/ZnO composites can be successfully synthesized using electrospinning. Antibacterial studies of the fabricated electrospun mats were carried out using zone inhibition method on Gram-positive S. aureus bacteria. The results showed that with increasing concentration of ZnO, antibacterial properties were improved.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Nkhwa S, Lauriaga KF, Kemal E, Deb S (2017) Conference papers in science, p 7

  2. Hoffman AS (2012) Hydrogels for biomedical applications. Adv Drug Deliv Rev 64:18

    Google Scholar 

  3. Paradossi G, Cavalieri F, Chiessi E, Spagnoli C, Cowman MK (2003) Poly (vinyl alcohol) as versatile biomaterial for potential biomedical application. J Mater Sci Mater Med 14:687

    CAS  PubMed  Google Scholar 

  4. Oka M, Noguchi T, Kumar P, Ikeuchi K, Yamamuro T, Hyon S, Ikada Y (1990) Development of an artificial articular cartilage. Clin Mater 6:361

    CAS  PubMed  Google Scholar 

  5. Yamaoka T, Tabata Y, Ikada Y (1995) Comparison of body distribution of poly (vinyl alcohol) with other water‐soluble polymers after intravenous administration. J Pharm Pharmacol 47:479

    CAS  PubMed  Google Scholar 

  6. Noguchi T, Yamamuro T, Oka M, Kumar P, Kotoura Y, Hyonyt SH, Ikadat Y (1991) Poly(vinyl alcohol) hydrogel as an artificial articular cartilage: evaluation of biocompatibility. J Appl Biomater 2:101

    CAS  PubMed  Google Scholar 

  7. Kaetsu I (1993) Recent trends in radiation polymer chemistry. Springer, Berlin

    Google Scholar 

  8. Hassan CM, Peppas NA (2000) Cellular PVA hydrogels produced by freeze/thawing. J Appl Polym Sci 76:2075

    CAS  Google Scholar 

  9. Kenawy E-R, Kamoun EA, Eldin MSM, El-Meligy MA (2014) Physically crosslinked poly(vinyl alcohol)-hydroxyethyl starch blend hydrogel membranes: synthesis and characterization for biomedical applications. Arab J Chem 7:372

    CAS  Google Scholar 

  10. Zhao L, Mitomo H, Zhai M, Yoshii F, Nagasawa N, Kume T (2003) Synthesis of antibacterial PVA/CM-chitosan blend hydrogels with electron beam irradiation. Carbohydr Polym 53:439

    CAS  Google Scholar 

  11. Muggli DS, Burkoth AK, Anseth KS (1999) Crosslinked polyanhydrides for use in orthopedic applications: degradation behavior and mechanics. J Biomed Mater Res 46:271

    CAS  PubMed  Google Scholar 

  12. Yang X, Liu Q, Chen X, Yu F, Zhu Z (2008) Investigation of PVA/ws-chitosan hydrogels prepared by combined γ-irradiation and freeze-thawing. Carbohydr Polym 73:401

    CAS  Google Scholar 

  13. Hyon S-H, Cha W-I, Ikada Y, Kita M, Ogura Y, Honda Y (1994) Poly(vinyl alcohol) hydrogels as soft contact lens material. J Biomater Sci Polym Ed 5:397

    CAS  PubMed  Google Scholar 

  14. Burkinshaw S, Kumar N (2008) The reduction clearing of dyed polyester. Part 1: colour strength. Dyes Pigm 76:799

    CAS  Google Scholar 

  15. Burkinshaw S, Kumar N (2008) A polyvinyl alcohol after treatment for nylon 6,6. Part 2: complex formation. Dyes Pigm 77:86

    CAS  Google Scholar 

  16. Pourciel M, Launay J, Sant W, Conédéra V, Martinez A, Temple-Boyer P (2003) Development of photo-polymerisable polyvinyl alcohol for biotechnological applications. Sens Actuat B Chem 94:330

    CAS  Google Scholar 

  17. Peng S, Liu X, Sun J, Gao Z, Yao L, Qiu Y (2010) Influence of absorbed moisture on desizing of poly(vinyl alcohol) on cotton fabrics during atmospheric pressure plasma jet treatment. Appl Surf Sci 256:4103

    CAS  Google Scholar 

  18. Hajji P, David L, Gerard J, Pascault J, Vigier G (1999) Synthesis, structure, and morphology of polymer-silica hybrid nanocomposites based on hydroxyethyl methacrylate. J Polym Sci B Polym Phys 37:3172

    CAS  Google Scholar 

  19. Shao C, Kim H-Y, Gong J, Ding B, Lee D-R, Park S-J (2003) Fiber mats of poly(vinyl alcohol)/silica composite via electrospinning. Mater Lett 57:1579

    CAS  Google Scholar 

  20. Abdolmaleki A, Mallakpour S, Borandeh S (2011) Preparation, characterization and surface morphology of novel optically active poly(ester-amide)/functionalized ZnO bionanocomposites via ultrasonication assisted process. Appl Surf Sci 257:6725

    CAS  Google Scholar 

  21. Rathi A, Kundalwal SI (2020) Preparation, characterization and surface morphology of novel optically active poly(ester-amide)/functionalized ZnO bionanocomposites via ultrasonication assisted process. Polym Compos 41:2491

    CAS  Google Scholar 

  22. Kundalwal S, Rathi A (2020) Improved mechanical and viscoelastic properties of CNT-composites fabricated using an innovative ultrasonic dual mixing technique. J Mech Behav Mater 29:77

    Google Scholar 

  23. Rathi A, Kundalwal SI, Singh S, Kumar A (2021) Adhesive and viscoelastic response of MWCNT/ZrO2 hybrid epoxy nanocomposites. J Mech Mater Struct 16:281

    Google Scholar 

  24. Wang J, Yao H-B, He D, Zhang C-L, Yu S-H, Appl ACS (2012) Facile Fabrication of gold nanoparticles-poly(vinyl alcohol) electrospun water-stable nanofibrous mats: efficient substrate materials for biosensors. Mater Interfaces 4:1963

    CAS  Google Scholar 

  25. Jin W-J, Jeon HJ, Kim JH, Youk JH (2007) A study on the preparation of poly(vinyl alcohol) nanofibers containing silver nanoparticles. Synth Met 157:454

    CAS  Google Scholar 

  26. Wang Y, Zhang Q, Zhang C-L, Li P (2012) Characterisation and cooperative antimicrobial properties of chitosan/nano-ZnO composite nanofibrous membranes. Food Chem 132:419

    CAS  PubMed  Google Scholar 

  27. Pang Z, Dai Z, Wang Z (2001) Nanobelts of Semiconducting oxides. Science 291:1947

    Google Scholar 

  28. Rensmo H, Keis K, Lindström H, Södergren S, Solbrand A, Hagfeldt A, Lindquist S-E, Wang L, Muhammed M (1997) High light-to-energy conversion efficiencies for solar cells based on nanostructured ZnO electrodes. J Phys Chem B 101:2598

    CAS  Google Scholar 

  29. Cheng X, Zhao H, Huo L, Gao S, Zhao J (2004) ZnO nanoparticulate thin film: preparation, characterization and gas-sensing property. Sens Actuat B Chem 102:248

    CAS  Google Scholar 

  30. Kamat PV, Huehn R, Nicolaescu R (2002) A “sense and shoot” approach for photocatalytic degradation of organic contaminants in water. J Phys Chem B 106:788

    CAS  Google Scholar 

  31. Sharma P, Sreenivas K, Rao K (2003) Analysis of ultraviolet photoconductivity in ZnO films prepared by unbalanced magnetron sputtering. J Appl Phys 93:3963

    CAS  Google Scholar 

  32. Topoglidis E, Cass AE, O’Regan B, Durrant JR (2001) Immobilisation and bioelectrochemistry of proteins on nanoporous TiO2 and ZnO films. J Electroanal Chem 517:20

    CAS  Google Scholar 

  33. Wang C, Liu L-L, Zhang A-T, Xie P, Lu J-J, Zou X-T (2016) Optical and microstructure of thin film of Ag-doped ZnO synthesized by sol-gel. Afr J Biotechnol 11:10248

    Google Scholar 

  34. Li SC, Li YN (2010) Mechanical and antibacterial properties of modified nano‐ZnO/high‐density polyethylene composite films with a low doped content of nano‐ZnO. J Appl Polym Sci 116:2965

    CAS  Google Scholar 

  35. Vicentini DS, Smania A, Laranjeira MC (2010) Chitosan/poly (vinyl alcohol) films containing ZnO nanoparticles and plasticizers. Mater Sci Eng C 30:503

    CAS  Google Scholar 

  36. Padmavathy N, Vijayaraghavan R (2016) Chemical manipulation of oxygen vacancy and antibacterial activity in ZnO. Sci Technol Adv Mater 77:1027–1034

    Google Scholar 

  37. Raghupathi KR, Koodali RT, Manna AC (2011) Size-dependent bacterial growth inhibition and mechanism of antibacterial activity of zinc oxide nanoparticles. Langmuir 27:4020

    CAS  PubMed  Google Scholar 

  38. Farouk A, Moussa S, Ulbricht M, Textor T (2012) ZnO nanoparticles-chitosan composite as antibacterial finish for textiles. Int J Carbohydr Chem 2012:1

    Google Scholar 

  39. Zhou J, Xu NS, Wang ZL (2006) Dissolving behavior and stability of ZnO wires in biofluids: a study on biodegradability and biocompatibility of ZnO nanostructures. Adv Mater 18:2432

    CAS  Google Scholar 

  40. Sangkhaprom N, Supaphol P, Pavarajarn V (2010) Fibrous zinc oxide prepared by combined electrospinning and solvothermal techniques. Ceram Int 36:357

    CAS  Google Scholar 

  41. Li D, Xia Y (2004) Electrospinning of nanofibers: reinventing the wheel? Adv Mater 16:1151

    CAS  Google Scholar 

  42. Dzenis YA (2004) Spinning continuous fibers for nanotechnology. Science 304:1917

    CAS  PubMed  Google Scholar 

  43. Zhao Y, Zhou Y, Wu X, Wang L, Xu L, Wei S (2012) A facile method for electrospinning of Ag nanoparticles/poly (vinyl alcohol)/carboxymethyl-chitosan nanofibers. Appl Surf Sci 258:8867

    CAS  Google Scholar 

  44. Augustine R, Malik HN, Singhal DK, Mukherjee A, Malakar D, Kalarikkal N, Thomas S (2014) Electrospun polycaprolactone/ZnO nanocomposite membranes as biomaterials with antibacterial and cell adhesion properties. J Polym Res 21:1

    CAS  Google Scholar 

  45. Augustine R, Dominic EA, Reju I, Kaimal B, Kalarikkal N, Thomas S (2014) Electrospun polycaprolactone membranes incorporated with ZnO nanoparticles as skin substitutes with enhanced fibroblast proliferation and wound healing. RSC Adv 4:24777

    CAS  Google Scholar 

  46. Singleton J (2013) World textile industry. Routledge, London

    Google Scholar 

  47. Shahidi S, Wiener J (2012) Antimicrobial agents. InTech, New York

    Google Scholar 

  48. Gao Y, Cranston R (2008) Recent advances in antimicrobial treatments of textiles. Text Res J 78:60

    CAS  Google Scholar 

  49. Windler L, Height M, Nowack B (2013) Comparative evaluation of antimicrobials for textile applications. Environ Int 53:62

    CAS  PubMed  Google Scholar 

  50. Simoncic B, Tomsic B (2010) Structures of novel antimicrobial agents for textiles—a review. Text Res J 80:1721

    CAS  Google Scholar 

  51. Bshena O, Heunis TD, Dicks LM, Klumperman B (2011) Antimicrobial fibers: therapeutic possibilities and recent advances. Future Med Chem 3:1821

    CAS  PubMed  Google Scholar 

  52. Morais DS, Guedes RM, Lopes MA (2016) Antimicrobial approaches for textiles: from research to market. Materials 9:498

    PubMed  PubMed Central  Google Scholar 

  53. Palza H (2015) Antimicrobial polymers with metal nanoparticles. Int J Mol Sci 16:2099

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Ijaz K (2017) Low temperature flow synthesis of nanobioceramics—design, development and proof of concept studies, CIIT, Lahore

  55. Jyoti K, Baunthiyal M, Singh A (2016) Characterization of silver nanoparticles synthesized using Urtica dioica Linn. leaves and their synergistic effects with antibiotics. J Radiat Res Appl Sci 9:217

    CAS  Google Scholar 

  56. Ghosal K, Thomas S, Kalarikkal N, Gnanamani A (2014) Electrospun polycaprolactone/ZnO nanocomposite membranes as biomaterials with antibacterial and cell adhesion properties. J Polym Res 21:1

    CAS  Google Scholar 

  57. File PD (1967) ASTM, Philadelphia, Pa, p 9

  58. Yadav A, Prasad V, Kathe A, Raj S, Yadav D, Sundaramoorthy C, Vigneshwaran N (2006) Functional finishing in cotton fabrics using zinc oxide nanoparticles. Bull Mater Sci 29:641

    CAS  Google Scholar 

  59. Chen C, Yu B, Liu P, Liu J, Wang L (2011) Investigation of nano-sized ZnO particles fabricated by various synthesis routes. J Ceram Process Res 12:420

    Google Scholar 

  60. Pung S-Y, Lee W-P, Aziz A (2012) Kinetic study of organic dye degradation using ZnO particles with different morphologies as a photocatalyst. Int J Inorg Chem 2012:1

    Google Scholar 

  61. Wang T, Turhan M, Gunasekaran S (2004) Selected properties of pH-sensitive, biodegradable chitosan–poly(vinyl alcohol) hydrogel. Polym Int 53:911

    CAS  Google Scholar 

  62. Mansur HS, Sadahira CM, Souza AN, Mansur AA (2008) Selected properties of pH-sensitive, biodegradable chitosan–poly(vinyl alcohol) hydrogel. Mater Sci Eng C 28:539

    CAS  Google Scholar 

  63. Coates J (2000) Encyclopedia of analytical chemistry, interpretation of infrared spectra, a practical approach. Wiley, Chichester

    Google Scholar 

  64. Mansur HS, Oréfice RL, Mansur AA (2004) Characterization of poly(vinyl alcohol)/poly(ethylene glycol) hydrogels and PVA-derived hybrids by small-angle X-ray scattering and FTIR spectroscopy. Polymer 45:7193

    CAS  Google Scholar 

  65. Pollini M, Russo M, Licciulli A, Sannino A, Maffezzoli A (2009) Characterization of antibacterial silver coated yarns. J Mater Sci Mater Med 20:2361

    CAS  PubMed  Google Scholar 

  66. Raghavendra GM, Jayaramudu T, Varaprasad K, Ramesh S, Raju KM (2014) Microbial resistant nanocurcumin-gelatin-cellulose fibers for advanced medical applications. RSC Adv 4:3494

    CAS  Google Scholar 

  67. Sirelkhatim A, Mahmud S, Seeni A, Kaus NHM, Ann LC, Bakhori SKM, Hasan H, Mohamad D (2015) Review on zinc oxide nanoparticles: antibacterial activity and toxicity mechanism. Nanomicro Lett 7:219

    CAS  PubMed  Google Scholar 

  68. Sawai J, Shoji S, Igarashi H, Hashimoto A, Kokugan T, Shimizu M, Kojima H (1998) Hydrogen peroxide as an antibacterial factor in zinc oxide powder slurry. J Ferment Bioeng 86:521

    CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Higher Education Commission NRPU (Project No. 20-1834/R&D/10-4886), Ministry of Science and Technology (for a developmental grant—PC1 CATBM) CUI-TWAS program for financial support (post-doctoral fellowship and research grant).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aqif A. Chaudhry.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Obasi, H.C., Ijaz, K., Akhtar, H. et al. Fabrication of antimicrobial electrospun mats using polyvinyl alcohol–zinc oxide blends. Polym. Bull. 80, 2681–2695 (2023). https://doi.org/10.1007/s00289-022-04164-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-022-04164-8

Keywords

Navigation