Skip to main content
Log in

Recent advancements of electrospun nanofibers for cancer therapy

  • Review Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Nanotechnology is a rapidly increasing scientific field due to its immense potential for developing new materials with exceptional structure-dependant characteristics through electrospinning as a feasible technique for producing nanofibers having a wide range of potential applications in cancer detection and diagnostics. Cancer is one of the most deadly diseases that has been afflicting humans for many decades. When dealing with cancer, a regulated and continuous drug release is much desired and effective, because such drugs can cause damage to normal cells. Owing to the high-dose requirements for general anticancer drugs utilized during chemotherapy, they have serious side effects. Anticancer drug-laden nanofibers have been accomplished using nanotechnology for treating cancer, requiring less drug because the drug is stored in these nanofibers for an extended period of time with a tunable drug release profile. Due to the fact that electrospun nanofibers are one of the most advantageous and rapidly evolving products of modern technology, they are promising candidates for cancer therapy. Although numerous research reports have been published on the application of nanofibers, few have focused exclusively on the use of nanofibers in cancer care. Thus, this analysis not only provides a fundamental understanding of the mechanism of electrospinning process and the properties of nanostructured fibrous materials, but also highlights the electrospinning technique's potential as a promising tool for fabricating polymeric nanofibers used for cancer therapy.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

NFs:

Nanofibers

References

  1. Pillay V, Dott C, Choonara YE et al (2013) A review of the effect of processing variables on the fabrication of electrospun nanofibers for drug delivery applications. J Nanomater. https://doi.org/10.1155/2013/789289

    Article  Google Scholar 

  2. Doshi J, Reneker DH (1995) Electrospinning process and applications of electrospun fibers. J Electrostat 35:151–160. https://doi.org/10.1016/0304-3886(95)00041-8

    Article  CAS  Google Scholar 

  3. MacDiarmid AG, Jones WE, Norris ID et al (2001) Electrostatically-generated nanofibers of electronic polymers. Synth Met 119:27–30. https://doi.org/10.1016/S0379-6779(00)00597-X

    Article  CAS  Google Scholar 

  4. Reneker DH, Chun I (1996) Nanometre diameter fibres of polymer, produced by electrospinning. Nanotechnology 7:216. https://doi.org/10.1088/0957-4484/7/3/009

    Article  CAS  Google Scholar 

  5. Yu J, Qiu Y, Zha X et al (2008) Macromolecular nanotechnology production of aligned helical polymer nanofibers by electrospinning 9:2838–2844. https://doi.org/10.1016/j.eurpolymj.2008.05.020

  6. Kessick R, Tepper G (2004) Microscale polymeric helical structures produced by electrospinning. Appl Phys Lett 84:1182. https://doi.org/10.1063/1.1762704

    Article  CAS  Google Scholar 

  7. Bretcanu O, Misra SK, Yunos DM et al (2009) Electrospun nanofibrous biodegradable polyester coatings on Bioglass®-based glass-ceramics for tissue engineering. Mater Chem Phys 118:420–426. https://doi.org/10.1016/j.matchemphys.2009.08.011

    Article  CAS  Google Scholar 

  8. Taylor GI (1969) Electrically driven jets. In: Proceedings of the Royal Society of London. A mathematical and physical sciences, vol 313, pp 453–475. https://doi.org/10.1098/RSPA.1969.0205

  9. Cloupeau M, Prunet-Foch B (1990) Electrostatic spraying of liquids: main functioning modes. J Electrostat 25:165–184. https://doi.org/10.1016/0304-3886(90)90025-Q

    Article  CAS  Google Scholar 

  10. Grace JM, Marijnissen JCM (1994) A review of liquid atomization by electrical means. J Aerosol Sci 25:1005–1019. https://doi.org/10.1016/0021-8502(94)90198-8

    Article  CAS  Google Scholar 

  11. Yarin AL, Koombhongse S, Reneker DH (2001) Bending instability in electrospinning of nanofibers. J Appl Phys 89:3018. https://doi.org/10.1063/1.1333035

    Article  CAS  Google Scholar 

  12. Deitzel JM, Kleinmeyer J, Harris D, Beck Tan NC (2001) The effect of processing variables on the morphology of electrospun nanofibers and textiles. Polymer 42:261–272. https://doi.org/10.1016/S0032-3861(00)00250-0

    Article  CAS  Google Scholar 

  13. Haider S, Al-Zeghayer Y, Ahmed Ali FA et al (2013) Highly aligned narrow diameter chitosan electrospun nanofibers. J Polym Res. https://doi.org/10.1007/S10965-013-0105-9

    Article  Google Scholar 

  14. Bae HS, Haider A, Selim KMK et al (2013) Fabrication of highly porous PMMA electrospun fibers and their application in the removal of phenol and iodine. J Polym Res. https://doi.org/10.1007/S10965-013-0158-9

    Article  Google Scholar 

  15. Frenot A, Chronakis IS (2003) Polymer nanofibers assembled by electrospinning. Curr Opinion Colloid Interface Sci 8:64–75. https://doi.org/10.1016/S1359-0294(03)00004-9

    Article  CAS  Google Scholar 

  16. Huang ZM, Zhang YZ, Kotaki M, Ramakrishna S (2003) A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Compos Sci Technol 63:2223–2253. https://doi.org/10.1016/S0266-3538(03)00178-7

    Article  CAS  Google Scholar 

  17. Ryu YJ, Kim HY, Lee KH et al (2003) Transport properties of electrospun nylon 6 nonwoven mats. Eur Polym J 39:1883–1889. https://doi.org/10.1016/S0014-3057(03)00096-X

    Article  CAS  Google Scholar 

  18. Li D, Wang Y, Xia Y (2003) Electrospinning of polymeric and ceramic nanofibers as uniaxially aligned arrays. Nano Lett 3:1167–1171. https://doi.org/10.1021/NL0344256

    Article  CAS  Google Scholar 

  19. Khajavi R, Abbasipour M (2012) Electrospinning as a versatile method for fabricating coreshell, hollow and porous nanofibers. Sci Iran 19:2029–2034. https://doi.org/10.1016/J.SCIENT.2012.10.037

    Article  Google Scholar 

  20. Chen Z, Foster MD, Zhou W et al (2001) Structure of poly(ferrocenyldimethylsilane) in electrospun nanofibers. Macromolecules 34:6156–6158. https://doi.org/10.1021/MA991857N

    Article  CAS  Google Scholar 

  21. Jaeger R, Scho H, Vancso GJ (1996) Chain packing in electro-spun poly(ethylene oxide) visualized by atomic force microscopy

  22. Pedicini A, Farris RJ (2003) Mechanical behavior of electrospun polyurethane. Polymer 44:6857–6862. https://doi.org/10.1016/J.POLYMER.2003.08.040

    Article  CAS  Google Scholar 

  23. Yount WC, Loveless DM, Craig SL (2005) Small-molecule dynamics and mechanisms underlying the macroscopic mechanical properties of coordinatively cross-linked polymer networks. J Am Chem Soc 127:14488–14496. https://doi.org/10.1021/JA054298A/SUPPL_FILE/JA054298ASI20050820_022128.PDF

    Article  CAS  Google Scholar 

  24. Luo X, Xie C, Wang H et al (2012) Antitumor activities of emulsion electrospun fibers with core loading of hydroxycamptothecin via intratumoral implantation. Int J Pharm 425:19–28. https://doi.org/10.1016/J.IJPHARM.2012.01.012

    Article  CAS  Google Scholar 

  25. Cheng S, Du Y, Ma B, Tan D (2009) Total synthesis of a furostan saponin, timosaponin BII. Org Biomol Chem 7:3112–3118. https://doi.org/10.1039/B905091D

    Article  CAS  Google Scholar 

  26. Weinberg BD, Blanco E, Gao J (2008) Polymer implants for intratumoral drug delivery and cancer therapy. J Pharm Sci 97:1681–1702. https://doi.org/10.1002/JPS.21038

    Article  CAS  Google Scholar 

  27. Long-circulating and target-specific nanoparticles: theory to practice-PubMed. https://pubmed.ncbi.nlm.nih.gov/11356986/. Accessed 25 Dec 2021

  28. Moghimi S, Hunter AC, Murray JC (2001) Long-circulating and target-specific nanoparticles: theory to practice. Pharmacol Rev 53(2):283–318

    CAS  Google Scholar 

  29. Lasprilla AJR, Martinez GAR, Lunelli BH et al (2012) Poly-lactic acid synthesis for application in biomedical devices—a review. Biotechnol Adv 30:321–328. https://doi.org/10.1016/J.BIOTECHADV.2011.06.019

    Article  CAS  Google Scholar 

  30. Rancan F, Papakostas D, Hadam S et al (2009) Investigation of polylactic acid (PLA) nanoparticles as drug delivery systems for local dermatotherapy. Pharm Res 26:2027–2036. https://doi.org/10.1007/S11095-009-9919-X

    Article  CAS  Google Scholar 

  31. EY Gómez-Pachón, R Vera-Graziano, RM Campos 2014 Structure of poly(lactic-acid) PLA nanofibers scaffolds prepared by electrospinning. IOP conference series: materials science and engineering. Vol 59, p 012003 https://doi.org/10.1088/1757-899X/59/1/012003

  32. Zeng J, Yang L, Liang Q et al (2005) Influence of the drug compatibility with polymer solution on the release kinetics of electrospun fiber formulation. J Controll Release 105:43–51. https://doi.org/10.1016/J.JCONREL.2005.02.024

    Article  CAS  Google Scholar 

  33. Thangaraju E, Srinivasan NT, Kumar R et al (2012) Fabrication of electrospun poly l-lactide and curcumin loaded poly l-lactide nanofibers for drug delivery. Fibers Polym 13(7):823–830. https://doi.org/10.1007/S12221-012-0823-3

    Article  CAS  Google Scholar 

  34. Xu X, Chen X, Xu X et al (2006) BCNU-loaded PEG-PLLA ultrafine fibers and their in vitro antitumor activity against Glioma C6 cells. J Controll Release 114:307–316. https://doi.org/10.1016/J.JCONREL.2006.05.031

    Article  CAS  Google Scholar 

  35. Chen P, Wu QS, Ding YP et al (2010) A controlled release system of titanocene dichloride by electrospun fiber and its antitumor activity in vitro. Eur J Pharm Biopharm 76:413–420. https://doi.org/10.1016/J.EJPB.2010.09.005

    Article  CAS  Google Scholar 

  36. Zhang Z, Liu S, Qi Y et al (2016) Time-programmed DCA and oxaliplatin release by multilayered nanofiber mats in prevention of local cancer recurrence following surgery. J Controll Release 235:125–133. https://doi.org/10.1016/J.JCONREL.2016.05.046

    Article  CAS  Google Scholar 

  37. Qiu K, He C, Feng W et al (2013) Doxorubicin-loaded electrospun poly(l-lactic acid)/mesoporous silica nanoparticles composite nanofibers for potential postsurgical cancer treatment. J Mater Chem B 1:4601–4611. https://doi.org/10.1039/C3TB20636J

    Article  CAS  Google Scholar 

  38. Ignatova MG, Manolova NE, Toshkova RA et al (2010) Electrospun nanofibrous mats containing quaternized chitosan and polylactide with in vitro antitumor activity against HeLa cells. Biomacromol 11:1633–1645. https://doi.org/10.1021/BM100285N

    Article  CAS  Google Scholar 

  39. Ignatova M, Yossifova L, Gardeva E et al (2011) Antiproliferative activity of nanofibers containing quaternized chitosan and/or doxorubicin against MCF-7 human breast carcinoma cell line by apoptosis. J Bioact Compat Polym 26:539–551. https://doi.org/10.1177/0883911511424655

    Article  CAS  Google Scholar 

  40. Toshkova R, Manolova N, Gardeva E et al (2010) Antitumor activity of quaternized chitosan-based electrospun implants against Graffi myeloid tumor. Int J Pharm 400:221–233. https://doi.org/10.1016/J.IJPHARM.2010.08.039

    Article  CAS  Google Scholar 

  41. Hasegawa M, Yagi K, Iwakawa S, Hirai M (2001) Chitosan induces apoptosis via caspase-3 activation in bladder tumor cells. Jpn J Cancer Res 92:459–466. https://doi.org/10.1111/J.1349-7006.2001.TB01116.X

    Article  CAS  Google Scholar 

  42. Lv G, He F, Wang X et al (2008) Novel nanocomposite of nano Fe3O4 and polylactide nanofibers for application in drug uptake and induction of cell death of leukemia cancer cells. Langmuir 24:2151–2156. https://doi.org/10.1021/LA702845S

    Article  CAS  Google Scholar 

  43. Xu X, Chen X, Ma P et al (2008) The release behavior of doxorubicin hydrochloride from medicated fibers prepared by emulsion-electrospinning. Eur J Pharm Biopharm 70:165–170. https://doi.org/10.1016/J.EJPB.2008.03.010

    Article  CAS  Google Scholar 

  44. Zhang H, Niu Q, Wang N et al (2015) Thermo-sensitive drug controlled release PLA core/PNIPAM shell fibers fabricated using a combination of electrospinning and UV photo-polymerization. Eur Polym J 71:440–450. https://doi.org/10.1016/J.EURPOLYMJ.2015.08.023

    Article  CAS  Google Scholar 

  45. Xie J, Liu W, Macewan MR et al (2014) Neurite outgrowth on electrospun nanofibers with uniaxial alignment: the effects of fiber density, surface coating, and supporting substrate. ACS Nano 8:1878–1885. https://doi.org/10.1021/NN406363J/SUPPL_FILE/NN406363J_SI_003.PDF

    Article  CAS  Google Scholar 

  46. Bagó JR, Pegna GJ, Okolie O et al (2016) Electrospun nanofibrous scaffolds increase the efficacy of stem cell-mediated therapy of surgically resected glioblastoma. Biomaterials 90:116–125. https://doi.org/10.1016/j.biomaterials.2016.03.008

    Article  CAS  Google Scholar 

  47. Electrospun fibers of poly(l‐lactic acid) containing lovastatin with potential applications in drug delivery. https://en.x-mol.com/paper/article/1234178612260786176. Accessed 25 Dec 2021

  48. Zhu Y, Pyda M, Cebe P (2017) Electrospun fibers of poly(l-lactic acid) containing lovastatin with potential applications in drug delivery. J Appl Polym Sci. https://doi.org/10.1002/APP.45287

    Article  Google Scholar 

  49. Zhang Z, Liu S, Xiong H et al (2015) Electrospun PLA/MWCNTs composite nanofibers for combined chemo—and photothermal therapy. Acta Biomater 26:115–123. https://doi.org/10.1016/J.ACTBIO.2015.08.003

    Article  Google Scholar 

  50. Zhao X, Yuan Z, Yildirimer L et al (2015) Tumor-triggered controlled drug release from electrospun fibers using inorganic caps for inhibiting cancer relapse. Small 11:4284–4291. https://doi.org/10.1002/SMLL.201500985

    Article  CAS  Google Scholar 

  51. Xu X, Chen X, Wang Z, Jing X (2009) Ultrafine PEG-PLA fibers loaded with both paclitaxel and doxorubicin hydrochloride and their in vitro cytotoxicity. Eur J Pharm Biopharm 72:18–25. https://doi.org/10.1016/J.EJPB.2008.10.015

    Article  CAS  Google Scholar 

  52. Xie J, Wang CH (2006) Electrospun micro—and nanofibers for sustained delivery of paclitaxel to treat C6 Glioma in vitro. Pharm Res 23:1817–1826. https://doi.org/10.1007/S11095-006-9036-Z

    Article  CAS  Google Scholar 

  53. Kim K, Luu YK, Chang C et al (2004) Incorporation and controlled release of a hydrophilic antibiotic using poly(lactide-co-glycolide)-based electrospun nanofibrous scaffolds. J Controll Release 98:47–56. https://doi.org/10.1016/J.JCONREL.2004.04.009

    Article  CAS  Google Scholar 

  54. Ranganath SH, Fu Y, Arifin DY et al (2010) The use of submicron/nanoscale PLGA implants to deliver paclitaxel with enhanced pharmacokinetics and therapeutic efficacy in intracranial glioblastoma in mice. Biomaterials 31:5199–5207. https://doi.org/10.1016/J.BIOMATERIALS.2010.03.002

    Article  CAS  Google Scholar 

  55. Chen Y, Wei J, Hu J et al (2014) Multiple drug-loaded electrospun PLGA/gelatin composite nanofibers encapsulated with mesoporous ZnO nanospheres for potential postsurgical cancer treatment. RSC Adv 4:28011–28019. https://doi.org/10.1039/C4RA03722G

    Article  Google Scholar 

  56. Vashisth P, Kumar N, Sharma M, Pruthi V (2015) Biomedical applications of ferulic acid encapsulated electrospun nanofibers. Biotechnol Rep (Amst) 8:36–44. https://doi.org/10.1016/J.BTRE.2015.08.008

    Article  Google Scholar 

  57. Mehrasa M, Asadollahi MA, Nasri-Nasrabadi B et al (2016) Incorporation of mesoporous silica nanoparticles into random electrospun PLGA and PLGA/gelatin nanofibrous scaffolds enhances mechanical and cell proliferation properties. Mater Sci Eng C Mater Biol Appl 66:25–32. https://doi.org/10.1016/J.MSEC.2016.04.031

    Article  CAS  Google Scholar 

  58. Mehrasa M, Asadollahi MA, Ghaedi K et al (2015) Electrospun aligned PLGA and PLGA/gelatin nanofibers embedded with silica nanoparticles for tissue engineering. Int J Biol Macromol 79:687–695. https://doi.org/10.1016/J.IJBIOMAC.2015.05.050

    Article  CAS  Google Scholar 

  59. Qi RL, Tian XJ, Guo R et al (2016) Controlled release of doxorubicin from electrospun MWCNTs/PLGA hybrid nanofibers. Chin J Polym Sci 34(9):1047–1059. https://doi.org/10.1007/S10118-016-1827-Z

    Article  CAS  Google Scholar 

  60. Sasikala ARK, Unnithan AR, Yun YH et al (2016) An implantable smart magnetic nanofiber device for endoscopic hyperthermia treatment and tumor-triggered controlled drug release. Acta Biomater 31:122–133. https://doi.org/10.1016/J.ACTBIO.2015.12.015

    Article  CAS  Google Scholar 

  61. Lei C, Cui Y, Zheng L et al (2013) Development of a gene/drug dual delivery system for brain tumor therapy: potent inhibition via RNA interference and synergistic effects. Biomaterials 34:7483–7494. https://doi.org/10.1016/J.BIOMATERIALS.2013.06.010

    Article  CAS  Google Scholar 

  62. Chen S, Boda SK, Batra SK et al (2018) Emerging roles of electrospun nanofibers in cancer research. Adv Healthcare Mater 7:e1701024. https://doi.org/10.1002/ADHM.201701024

    Article  Google Scholar 

  63. Natu MV, de Sousa HC, Gil MH (2010) Effects of drug solubility, state and loading on controlled release in bicomponent electrospun fibers. Int J Pharm 397:50–58. https://doi.org/10.1016/J.IJPHARM.2010.06.045

    Article  CAS  Google Scholar 

  64. Khor E, Lim LY (2003) Implantable applications of chitin and chitosan. Biomaterials 24:2339–2349. https://doi.org/10.1016/S0142-9612(03)00026-7

    Article  CAS  Google Scholar 

  65. Liu X, Lin T, Gao Y et al (2012) Antimicrobial electrospun nanofibers of cellulose acetate and polyester urethane composite for wound dressing. J Biomed Mater Res B Appl Biomater 100:1556–1565. https://doi.org/10.1002/JBM.B.32724

    Article  Google Scholar 

  66. Fischer S, Thümmler K, Volkert B et al (2008) Properties and applications of cellulose acetate. Macromol Symp 262:89–96. https://doi.org/10.1002/MASY.200850210

    Article  CAS  Google Scholar 

  67. Assessment UENC for E (2009) Electrospun cellulose acetate fiber mats containing curcumin and release characteristic of the herbal substance

  68. Akaraonye E, Keshavarz T, Roy I (2010) Production of polyhydroxyalkanoates: the future green materials of choice. J Chem Technol Biotechnol 85:732–743. https://doi.org/10.1002/JCTB.2392

    Article  CAS  Google Scholar 

  69. (PDF) Polyhydroxyalkanoates: bio-based microbial plastics and their properties. https://www.researchgate.net/publication/228650294_Polyhydroxyalkanoates_Bio-based_microbial_plastics_and_their_properties. Accessed 26 Dec 2021

  70. Peng SW, Guo XY, Shang GG et al (2011) An assessment of the risks of carcinogenicity associated with polyhydroxyalkanoates through an analysis of DNA aneuploid and telomerase activity. Biomaterials 32:2546–2555. https://doi.org/10.1016/J.BIOMATERIALS.2010.12.051

    Article  CAS  Google Scholar 

  71. Mottina AC, Ayres E, Orefice RL, Câmara JJD (2016) What changes in Poly(3-Hydroxybutyrate) (PHB) when processed as electrospun nanofibers or thermo-compression molded film? Mater Res 19:57–66. https://doi.org/10.1590/1980-5373-MR-2015-0280

    Article  CAS  Google Scholar 

  72. O’Connor S, Szwej E, Nikodinovic-Runic J et al (2013) The anti-cancer activity of a cationic anti-microbial peptide derived from monomers of polyhydroxyalkanoate. Biomaterials 34:2710–2718. https://doi.org/10.1016/j.biomaterials.2012.12.032

    Article  CAS  Google Scholar 

  73. Huang C, Soenen SJ, Rejman J et al (2012) Magnetic electrospun fibers for cancer therapy. Adv Func Mater 22:2479–2486. https://doi.org/10.1002/ADFM.201102171

    Article  CAS  Google Scholar 

  74. Song M, Guo D, Pan C et al (2008) The application of poly(N-isopropylacrylamide)-co-polystyrene nanofibers as an additive agent to facilitate the cellular uptake of an anticancer drug. Nanotechnology. https://doi.org/10.1088/0957-4484/19/16/165102

    Article  Google Scholar 

  75. Elsner JJ, Zilberman M (2010) Novel antibiotic-eluting wound dressings: an in vitro study and engineering aspects in the dressing’s design. J Tissue Viability 19:54–66. https://doi.org/10.1016/J.JTV.2009.11.001

    Article  Google Scholar 

  76. Han SW, Koh WG (2016) Hydrogel-framed nanofiber matrix integrated with a microfluidic device for fluorescence detection of matrix metalloproteinases-9. Anal Chem 88:6247–6253. https://doi.org/10.1021/ACS.ANALCHEM.5B04867

    Article  CAS  Google Scholar 

  77. Abid S, Raza ZA, Rehman A (2016) Synthesis of poly(3-hydroxybutyrate) nanospheres and deposition thereof into porous thin film. Mater Res Express 3:105042. https://doi.org/10.1088/2053-1591/3/10/105042

    Article  CAS  Google Scholar 

  78. Zhao Y, Fan Z, Shen M et al (2015) Hyaluronic acid-functionalized electrospun polyvinyl alcohol/polyethyleneimine nanofibers for cancer cell capture applications. Adv Mater Interfaces 2:1500256. https://doi.org/10.1002/admi.201500256

    Article  CAS  Google Scholar 

  79. Fan ZY, Zhao YL, Zhu XY et al (2016) Folic acid modified electrospun poly(vinyl alcohol)/polyethyleneimine nanofibers for cancer cell capture applications. Chin J Polym Sci 34:755–765. https://doi.org/10.1007/S10118-016-1792-6

    Article  CAS  Google Scholar 

  80. Kumar S, Rai P, Sharma JG et al (2016) PEDOT:PSS/PVA-nanofibers-decorated conducting paper for cancer diagnostics. Adv Mater Technol. https://doi.org/10.1002/ADMT.201600056

    Article  Google Scholar 

  81. Dong J, Chen JF, Smalley M et al (2020) Nanostructured substrates for detection and characterization of circulating rare cells: from materials research to clinical applications. Adv Mater 32:e1903663. https://doi.org/10.1002/ADMA.201903663

    Article  Google Scholar 

  82. Yang G, Wang J, Wang Y et al (2015) An implantable active-targeting micelle-in-nanofiber device for efficient and safe cancer therapy. ACS Nano 9:1161–1174. https://doi.org/10.1021/NN504573U

    Article  CAS  Google Scholar 

  83. Barzegar F, Bello A, Fabiane M et al (2015) Preparation and characterization of poly(vinyl alcohol)/graphene nanofibers synthesized by electrospinning. J Phys Chem Solids 77:139–145. https://doi.org/10.1016/J.JPCS.2014.09.015

    Article  CAS  Google Scholar 

  84. Wang C, Ma C, Wu Z et al (2015) Enhanced bioavailability and anticancer effect of curcumin-loaded electrospun nanofiber. in vitro and in vivo study. Nanoscale Res Lett 10:1–10. https://doi.org/10.1186/S11671-015-1146-2/FIGURES/8

    Article  Google Scholar 

  85. Zhang N, Deng Y, Tai Q et al (2012) Electrospun TiO2 nanofiber-based cell capture assay for detecting circulating tumor cells from colorectal and gastric cancer patients. Adv Mater 24:2756–2760. https://doi.org/10.1002/ADMA.201200155

    Article  CAS  Google Scholar 

  86. Munaweera I, Levesque-Bishop D, Shi Y et al (2014) Radiotherapeutic bandage based on electrospun polyacrylonitrile containing holmium-166 iron garnet nanoparticles for the treatment of skin cancer. ACS Appl Mater Interfaces 6:22250–22256. https://doi.org/10.1021/AM506045K

    Article  CAS  Google Scholar 

  87. Jung HS, Kong WH, Sung DK et al (2014) Nanographene oxide-hyaluronic acid conjugate for photothermal ablation therapy of skin cancer. ACS Nano 8:260–268. https://doi.org/10.1021/NN405383A/SUPPL_FILE/NN405383A_SI_001.PDF

    Article  CAS  Google Scholar 

  88. Gelain F, Unsworth LD, Zhang S (2010) Slow and sustained release of active cytokines from self-assembling peptide scaffolds. J Controll Release 145:231–239. https://doi.org/10.1016/J.JCONREL.2010.04.026

    Article  CAS  Google Scholar 

  89. Sridhar R, Ravanan S, Venugopal JR et al (2014) Curcumin- and natural extract-loaded nanofibres for potential treatment of lung and breast cancer: in vitro efficacy evaluation. J Biomater Sci Polym Ed 25:985–998. https://doi.org/10.1080/09205063.2014.917039

    Article  CAS  Google Scholar 

  90. Yohe ST, Herrera VLM, Colson YL, Grinstaff MW (2012) 3D superhydrophobic electrospun meshes as reinforcement materials for sustained local drug delivery against colorectal cancer cells. J Controll Release 162:92–101. https://doi.org/10.1016/J.JCONREL.2012.05.047

    Article  CAS  Google Scholar 

  91. Yohe ST, Colson YL, Grinstaff MW (2012) Superhydrophobic materials for tunable drug release: using displacement of air to control delivery rates. J Am Chem Soc 134:2016–2019. https://doi.org/10.1021/JA211148A

    Article  CAS  Google Scholar 

  92. Fu Y, Li X, Ren Z et al (2018) Multifunctional electrospun nanofibers for enhancing localized cancer treatment. Small 14:e1801183. https://doi.org/10.1002/SMLL.201801183

    Article  Google Scholar 

  93. Shao S, Li L, Yang G et al (2011) Controlled green tea polyphenols release from electrospun PCL/MWCNTs composite nanofibers. Int J Pharm 421:310–320. https://doi.org/10.1016/J.IJPHARM.2011.09.033

    Article  CAS  Google Scholar 

  94. Jiang J, Xie J, Ma B et al (2014) Mussel-inspired protein-mediated surface functionalization of electrospun nanofibers for pH-responsive drug delivery. Acta Biomater 10:1324–1332. https://doi.org/10.1016/J.ACTBIO.2013.11.012

    Article  CAS  Google Scholar 

  95. Xue R, Behera P, Xu J et al (2014) Polydimethylsiloxane core-polycaprolactone shell nanofibers as biocompatible, real-time oxygen sensors. Sens Actuators B Chem 192:697. https://doi.org/10.1016/J.SNB.2013.10.084

    Article  CAS  Google Scholar 

  96. Agudelo-Garcia PA, de Jesus JK, Williams SP et al (2011) Glioma cell migration on three-dimensional nanofiber scaffolds is regulated by substrate topography and abolished by inhibition of STAT3 signaling. Neoplasia 13:831–840. https://doi.org/10.1593/NEO.11612

    Article  CAS  Google Scholar 

  97. Sims-Mourtada J, Niamat RA, Samuel S et al (2014) Enrichment of breast cancer stem-like cells by growth on electrospun polycaprolactone-chitosan nanofiber scaffolds. Int J Nanomed 9:995. https://doi.org/10.2147/IJN.S55720

    Article  Google Scholar 

  98. Jain A, Betancur M, Patel GD et al (2014) Guiding intracortical brain tumour cells to an extracortical cytotoxic hydrogel using aligned polymeric nanofibres. Nat Mater 13:308–316. https://doi.org/10.1038/NMAT3878

    Article  CAS  Google Scholar 

  99. Hartman O, Zhang C, Adams EL et al (2010) Biofunctionalization of electrospun PCL-based scaffolds with perlecan domain IV peptide to create a 3-D pharmacokinetic cancer model. Biomaterials 31:5700–5718. https://doi.org/10.1016/J.BIOMATERIALS.2010.03.017

    Article  CAS  Google Scholar 

  100. Hesami P, Holzapfel BM, Taubenberger A et al (2014) A humanized tissue-engineered in vivo model to dissect interactions between human prostate cancer cells and human bone. Clin Exp Metas 31:435–446. https://doi.org/10.1007/S10585-014-9638-5

    Article  CAS  Google Scholar 

  101. Ravanan S, Prema AA, Xavier RJ, Sahayaraj PA (2016) Anti-cancer activity (A431 cancer cells) and cytotoxic efficiency (HaCaT skin cells) of Curcumin/Neem loaded polycaprolactone (PCL) nanofibres. Der Pharma Chem 8:104–111

    CAS  Google Scholar 

  102. Lin WC, Yeh IT, Niyama E et al (2018) Electrospun poly (ε-caprolactone) nanofibrous mesh for imiquimod delivery in melanoma therapy. Polymers 10:231. https://doi.org/10.3390/POLYM10030231

    Article  Google Scholar 

  103. Garrett R, Niiyama E, Kotsuchibashi Y et al (2015) Biodegradable nanofiber for delivery of immunomodulating agent in the treatment of basal cell carcinoma. Fibers 3:478–490. https://doi.org/10.3390/FIB3040478

    Article  CAS  Google Scholar 

  104. Ramírez-Agudelo R, Scheuermann K, Gala-García A et al (2018) Hybrid nanofibers based on poly-caprolactone/gelatin/hydroxyapatite nanoparticles-loaded Doxycycline: Effective anti-tumoral and antibacterial activity. Mater Sci Eng C Mater Biol Appl 83:25–34. https://doi.org/10.1016/J.MSEC.2017.08.012

    Article  Google Scholar 

  105. Zhu LF, Zheng Y, Fan J et al (2019) A novel core-shell nanofiber drug delivery system intended for the synergistic treatment of melanoma. Eur J Pharm Sci. https://doi.org/10.1016/J.EJPS.2019.105002

    Article  Google Scholar 

  106. Janani I, Lakra R, Kiran MS, Korrapati PS (2018) Selectivity and sensitivity of molybdenum oxide-polycaprolactone nanofiber composites on skin cancer: Preliminary in-vitro and in-vivo implications. J Trace Elements Med Biol 49:60–71. https://doi.org/10.1016/J.JTEMB.2018.04.033

    Article  CAS  Google Scholar 

  107. Nakadaira H, Endoh K, Yamamoto M, Katoh K (1995) Distribution of selenium and molybdenum and cancer mortality in Niigata, Japan. Arch Environ Health 50:374–380. https://doi.org/10.1080/00039896.1995.9935970

    Article  CAS  Google Scholar 

  108. Xi Y, Ge J, Guo Y et al (2018) Biomimetic elastomeric polypeptide-based nanofibrous matrix for overcoming multidrug-resistant bacteria and enhancing full-thickness wound healing/skin regeneration. ACS Nano 12:10772–10784. https://doi.org/10.1021/ACSNANO.8B01152/SUPPL_FILE/NN8B01152_SI_001.PDF

    Article  CAS  Google Scholar 

  109. Yu DG, Li XY, Wang X et al (2015) Nanofibers fabricated using triaxial electrospinning as zero order drug delivery systems. ACS Appl Mater Interfaces 7:18891–18897. https://doi.org/10.1021/ACSAMI.5B06007/SUPPL_FILE/AM5B06007_SI_001.PDF

    Article  CAS  Google Scholar 

  110. Jayakumar R, Prabaharan M, Nair SV, Tamura H (2010) Novel chitin and chitosan nanofibers in biomedical applications. Biotechnol Adv 28:142–150. https://doi.org/10.1016/J.BIOTECHADV.2009.11.001

    Article  CAS  Google Scholar 

  111. Ignatova M, Manolova N, Rashkov I (2007) Novel antibacterial fibers of quaternized chitosan and poly(vinyl pyrrolidone) prepared by electrospinning. Eur Polym J 43:1112–1122. https://doi.org/10.1016/J.EURPOLYMJ.2007.01.012

    Article  CAS  Google Scholar 

  112. Ma G, Liu Y, Peng C et al (2011) Paclitaxel loaded electrospun porous nanofibers as mat potential application for chemotherapy against prostate cancer. Carbohyd Polym 86:505–512. https://doi.org/10.1016/J.CARBPOL.2011.04.082

    Article  CAS  Google Scholar 

  113. Ardeshirzadeh B, Anaraki NA, Irani M et al (2015) Controlled release of doxorubicin from electrospun PEO/chitosan/graphene oxide nanocomposite nanofibrous scaffolds. Mater Sci Eng C Mater Biol Appl 48:384–390. https://doi.org/10.1016/J.MSEC.2014.12.039

    Article  CAS  Google Scholar 

  114. Li W, Luo T, Yang Y et al (2015) Formation of controllable hydrophilic/hydrophobic drug delivery systems by electrospinning of vesicles. Langmuir 31:5141–5146. https://doi.org/10.1021/LA504796V

    Article  CAS  Google Scholar 

  115. Achille C, Sundaresh S, Chu B, Hadjiargyrou M (2012) Cdk2 silencing via a DNA/PCL electrospun scaffold suppresses proliferation and increases death of breast cancer cells. PLoS ONE 7:e52356. https://doi.org/10.1371/JOURNAL.PONE.0052356

    Article  CAS  Google Scholar 

  116. Radmansouri M, Bahmani E, Sarikhani E et al (2018) Doxorubicin hydrochloride—Loaded electrospun chitosan/cobalt ferrite/titanium oxide nanofibers for hyperthermic tumor cell treatment and controlled drug release. Int J Biol Macromol 116:378–384. https://doi.org/10.1016/J.IJBIOMAC.2018.04.161

    Article  CAS  Google Scholar 

  117. Lin TC, Lin FH, Lin JC (2012) In vitro feasibility study of the use of a magnetic electrospun chitosan nanofiber composite for hyperthermia treatment of tumor cells. Acta Biomater 8:2704–2711. https://doi.org/10.1016/J.ACTBIO.2012.03.045

    Article  CAS  Google Scholar 

  118. Park Y, Kang E, Kwon OJ et al (2010) Ionically crosslinked Ad/chitosan nanocomplexes processed by electrospinning for targeted cancer gene therapy. J Controll Release 148:75–82. https://doi.org/10.1016/J.JCONREL.2010.06.027

    Article  CAS  Google Scholar 

  119. Yang C, Chu L, Zhang Y et al (2015) Dynamic biostability, biodistribution, and toxicity of L/D-peptide-based supramolecular nanofibers. ACS Appl Mater Interfaces 7:2735–2744. https://doi.org/10.1021/AM507800E

    Article  CAS  Google Scholar 

  120. Krishnan R, Sundarrajan S, Ramakrishna S (2013) Green processing of nanofibers for regenerative medicine. Macromol Mater Eng 298:1034–1058. https://doi.org/10.1002/MAME.201200323

    Article  CAS  Google Scholar 

  121. Poláková L, Širc J, Hobzová R et al (2019) Electrospun nanofibers for local anticancer therapy: review of in vivo activity. Int J Pharm 558:268–283. https://doi.org/10.1016/J.IJPHARM.2018.12.059

    Article  Google Scholar 

  122. Tort S, Han D, Steckl AJ (2020) Self-inflating floating nanofiber membranes for controlled drug delivery. Int J Pharm 579:119164. https://doi.org/10.1016/J.IJPHARM.2020.119164

    Article  CAS  Google Scholar 

  123. Garkal A, Kulkarni D, Musale S et al (2021) Electrospinning nanofiber technology: a multifaceted paradigm in biomedical applications. New J Chem 45:21508–21533. https://doi.org/10.1039/D1NJ04159B

    Article  CAS  Google Scholar 

  124. Dziemidowicz K, Sang Q, Wu J et al (2021) Electrospinning for healthcare: recent advancements. J Mater Chem B 9:939–951. https://doi.org/10.1039/D0TB02124E

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anagha S. Sabnis.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jagtiani, E., Sabnis, A.S. Recent advancements of electrospun nanofibers for cancer therapy. Polym. Bull. 80, 1215–1242 (2023). https://doi.org/10.1007/s00289-022-04153-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-022-04153-x

Keywords

Navigation