Skip to main content
Log in

Magnetically functionalized molecularly imprinted polymer for curcumin adsorption by experimental design

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

A molecularly imprinted polymer synthesis parameters for curcumin is optimized by the uniform experimental design method. The polymer is prepared by precipitation polymerization method. In this method, curcumin (CUR), N-isopropylacrylamide (NIPAAM) and 1-vinylimidazole (VI), azobisiobutyronitrile (AIBN) and ethylene glycol dimethacrylate (EGDMA) are used as template, functional monomers, initiator and cross-linker, respectively. The effects of synthesis parameters on the preparation of curcumin-imprinted polymer have been optimized. The effects of the six following parameters are investigated by uniform experimental design. These are the moles of functional monomers (VI, 0.1–1.0 mmol, NIPAAM, 1.0–10.0 mmol), the moles of cross-linker (EGDMA, 5.0–50.0 mmol), amount of initiator (20–100 mg), moles of template (CUR, 0.1–1.0 mmol) and the kind of porogenic solvent (acetonitrile, toluene or DMSO). Additionally, a regression model representing the adsorption capacity (Q) of CUR is developed and validated by variance analysis (ANOVA).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Feng MX, Wang GN, Yang K et al (2016) Molecularly imprinted polymer-high performance liquid chromatography for the determination of tetracycline drugs in animal derived foods. Food Control. https://doi.org/10.1016/j.foodcont.2016.04.050

    Article  Google Scholar 

  2. Khulu S, Ncube S, Kgame T et al (2021) Synthesis, characterization and application of a molecularly imprinted polymer as an adsorbent for solid-phase extraction of selected pharmaceuticals from water samples. Polym Bull. https://doi.org/10.1007/s00289-021-03553-9

    Article  Google Scholar 

  3. Akgönüllü S, Armutcu C, Denizli A (2021) Molecularly imprinted polymer film based plasmonic sensors for detection of ochratoxin a in dried fig. Polym Bull. https://doi.org/10.1007/s00289-021-03699-6

    Article  Google Scholar 

  4. Kushwaha A, Singh S, Gupta N et al (2018) Synthesis and characterization of antipyrine-imprinted polymers and their application for sustained release. Polym Bull. https://doi.org/10.1007/s00289-018-2326-x

    Article  Google Scholar 

  5. da Silva WA, Feiteira FN, Francisco JE et al (2020) Pre-concentration of rosuvastatin using solid-phase extraction in a molecularly imprinted polymer and analytical application in water supply. Environ Sci Pollut Res. https://doi.org/10.1007/s11356-020-07742-3

    Article  Google Scholar 

  6. Maragou NC, Thomaidis NS, Theodoridis GA et al (2020) Determination of bisphenol A in canned food by microwave assisted extraction, molecularly imprinted polymer-solid phase extraction and liquid chromatography-mass spectrometry. J Chromatogr B Anal Technol Biomed Life Sci. https://doi.org/10.1016/j.jchromb.2019.121938

    Article  Google Scholar 

  7. Jouyban A, Farajzadeh MA, Afshar Mogaddam MR et al (2021) Molecularly imprinted polymer based-solid phase extraction combined with dispersive liquid–liquid microextraction using new deep eutectic solvent; selective extraction of valproic acid from exhaled breath condensate samples. Microchem J. https://doi.org/10.1016/j.microc.2020.105772

    Article  Google Scholar 

  8. Das D, Gupta U, Das AK (2012) Recent developments in solid phase extraction in elemental speciation of environmental samples with special reference to aqueous solutions. TrAC Trends Anal Chem. https://doi.org/10.1016/j.trac.2011.01.020

    Article  CAS  Google Scholar 

  9. Wierucka M, Biziuk M (2014) Application of magnetic nanoparticles for magnetic solid-phase extraction in preparing biological environmental and food samples. TrAC Trends Anal Chem. https://doi.org/10.1016/j.trac.2014.04.007

    Article  CAS  Google Scholar 

  10. Jiang X, Huang K, Deng D et al (2012) Nanomaterials in analytical atomic spectrometry. TrAC Trends Anal Chem. https://doi.org/10.1016/j.trac.2012.06.002

    Article  CAS  Google Scholar 

  11. Karlsson JG, Karlsson B, Andersson LI, Nicholls IA (2004) The roles of template complexation and ligand binding conditions on recognition in bupivacaine molecularly imprinted polymers. Analyst. https://doi.org/10.1039/b316716j

    Article  Google Scholar 

  12. Hantash J, Bartlett A, Oldfield P et al (2006) Use of an on-line imprinted polymer pre-column, for the liquid chromatographic-UV absorbance determination of carbaryl and its metabolite in complex matrices. J Chromatogr A. https://doi.org/10.1016/j.chroma.2006.05.054

    Article  Google Scholar 

  13. Xu Z, Liu L, Deng Q (2006) Study on the mechanism of binding specificity of metoclopramide-imprinted polymers. J Pharm Biomed Anal. https://doi.org/10.1016/j.jpba.2006.01.043

    Article  Google Scholar 

  14. Syu MJ, Nian YM, Chang YS et al (2006) Ionic effect on the binding of bilirubin to the imprinted poly(methacrylic acid-co-ethylene glycol dimethylacrylate). J Chromatogr A. https://doi.org/10.1016/j.chroma.2006.04.024

    Article  Google Scholar 

  15. Cummins W, Duggan P, McLoughlin P (2006) Systematic cross-selectivity study of the factors influencing template receptor interactions in molecularly imprinted nitrogen heterocycles. Biosens Bioelectron. https://doi.org/10.1016/j.bios.2006.05.003

    Article  Google Scholar 

  16. He JF, Zhu QH, Deng QY (2007) Investigation of imprinting parameters and their recognition nature for quinine-molecularly imprinted polymers. Spectrochim Acta Part A Mol Biomol Spectrosc 2:10. https://doi.org/10.1016/j.saa.2006.09.040

    Article  CAS  Google Scholar 

  17. Dong W, Yan M, Liu Z et al (2007) Effects of solvents on the adsorption selectivity of molecularly imprinted polymers: molecular simulation and experimental validation. Sep Purif Technol. https://doi.org/10.1016/j.seppur.2006.06.023

    Article  Google Scholar 

  18. Mijangos I, Navarro-Villoslada F, Guerreiro A et al (2006) Influence of initiator and different polymerisation conditions on performance of molecularly imprinted polymers. Biosens Bioelectron. https://doi.org/10.1016/j.bios.2006.05.012

    Article  Google Scholar 

  19. Lu Y, Li C, Wang X et al (2004) Influence of polymerization temperature on the molecular recognition of imprinted polymers. J Chromatogr B Anal Technol Biomed Life Sci. https://doi.org/10.1016/j.jchromb.2003.10.013

    Article  Google Scholar 

  20. Vaughan AD, Sizemore SP, Byrne ME (2007) Enhancing molecularly imprinted polymer binding properties via controlled/living radical polymerization and reaction analysis. Polymer (Guildf). https://doi.org/10.1016/j.polymer.2006.11.013

    Article  Google Scholar 

  21. Augusto F, Hantao LW, Mogollón NGS, Braga SCGN (2013) New materials and trends in sorbents for solid-phase extraction. TrAC Trends Anal Chem 43:14–23. https://doi.org/10.1016/j.trac.2012.08.012

    Article  CAS  Google Scholar 

  22. Unal B, Baykal A, Senel M, Sözeri H (2013) Synthesis and characterization of multiwall-carbon nanotubes decorated with nickel ferrite hybrid. J Inorg Organomet Polym Mater 23:489–498. https://doi.org/10.1007/s10904-012-9803-8

    Article  CAS  Google Scholar 

  23. Rahimi Z, Sarafraz H, Alahyarizadeh G, Shirani AS (2018) Hydrothermal synthesis of magnetic CoFe2O4 nanoparticles and CoFe2O4/MWCNTs nanocomposites for U and Pb removal from aqueous solutions. J Radioanal Nucl Chem 317:431–442. https://doi.org/10.1007/s10967-018-5894-1

    Article  CAS  Google Scholar 

  24. Hezam FA, Rajeh A, Nur O, Mustafa MA (2020) Synthesis and physical properties of spinel ferrites/MWCNTs hybrids nanocomposites for energy storage and photocatalytic applications. Phys B Condens Matter 596:412389. https://doi.org/10.1016/j.physb.2020.412389

    Article  CAS  Google Scholar 

  25. Lung I, Soran ML, Stegarescu A et al (2021) Evaluation of CNT-COOH/MnO2/Fe3O4 nanocomposite for ibuprofen and paracetamol removal from aqueous solutions. J Hazard Mater 403:123528. https://doi.org/10.1016/j.jhazmat.2020.123528

    Article  CAS  Google Scholar 

  26. Gholami Orimi F, Mirza B, Hossaini Z (2021) Fe3O4/ZnO/multi-walled carbon nanotubes magnetic nanocomposites promoted five components synthesis of new imidazole derivatives. Appl Organomet Chem 35:e6193. https://doi.org/10.1002/aoc.6193

    Article  CAS  Google Scholar 

  27. Phadatare MR, Khot VM, Salunkhe AB et al (2012) Studies on polyethylene glycol coating on NiFe2O4 nanoparticles for biomedical applications. J Magn Magn Mater 324:770–772. https://doi.org/10.1016/j.jmmm.2011.09.020

    Article  CAS  Google Scholar 

  28. Amoli Diva M, Pourghazi K (2018) CoFe2O4 nanoparticles grafted multi-walled carbon nanotubes coupled with surfactant-enhanced spectrofluorimetry for determination of ofl oxacin in human plasma. Nanochem Res 3:17–23. https://doi.org/10.22036/NCR.2018.01.002

    Article  CAS  Google Scholar 

  29. Djuris J (2013) Computer-aided applications in pharmaceutical technology. Cambridge, United Kingdom

  30. Fang KT (1980) Uniform design: application of number-theoretic methods in experimental design. Acta Math Appl Sin 3:363–372

    Google Scholar 

  31. Durakovic B (2017) Design of experiments application, concepts, examples: State of the art. Period Eng Nat Sci. https://doi.org/10.21533/pen.v5i3.145

    Article  Google Scholar 

  32. Costa N, Fontes P (2020) Energy-efficiency assessment and improvement - experiments and analysis methods. Sustain. https://doi.org/10.3390/su12187603

    Article  Google Scholar 

  33. Ilzarbe L, Álvarez MJ, Viles E, Tanco M (2008) Practical applications of design of experiments in the field of engineering: a bibliographical review. Qual Reliab Eng Int. https://doi.org/10.1002/qre.909

    Article  Google Scholar 

  34. Pugliese D, Bella F, Cauda V et al (2013) A chemometric approach for the sensitization procedure of ZnO flowerlike microstructures for dye-sensitized solar cells. ACS Appl Mater Interfaces 5:11288–11295. https://doi.org/10.1021/am403527m

    Article  CAS  Google Scholar 

  35. Mahmoudi S, Eshraghi MJ, Yarmand B et al (2019) Design of experiment approach to the optimization of diffusion process on nanoscopic silicon solar cell. J Alloys Compd 803:231–239. https://doi.org/10.1016/j.jallcom.2019.06.269

    Article  CAS  Google Scholar 

  36. Nezhadali A, Bonakdar GA (2019) Multivariate optimization of mebeverine analysis using molecularly imprinted polymer electrochemical sensor based on silver nanoparticles. J Food Drug Anal 27:305–314. https://doi.org/10.1016/j.jfda.2018.05.002

    Article  CAS  Google Scholar 

  37. Rachmawati H, Safitri D, Pradana AT, Adnyana IK (2016) TPGS-stabilized curcumin nanoparticles exhibit superior effect on carrageenan-induced inflammation in wistar rat. Pharmaceutics. https://doi.org/10.3390/pharmaceutics8030024

    Article  Google Scholar 

  38. Anand P, Sundaram C, Jhurani S et al (2008) Curcumin and cancer: An “old-age” disease with an “age-old” solution. Cancer Lett. https://doi.org/10.1016/j.canlet.2008.03.025

    Article  Google Scholar 

  39. Saikia C, Das MK, Ramteke A, Maji TK (2016) Effect of crosslinker on drug delivery properties of curcumin loaded starch coated iron oxide nanoparticles. Int J Biol Macromol. https://doi.org/10.1016/j.ijbiomac.2016.09.043

    Article  Google Scholar 

  40. Fang KT, Lin DKJ, Winker P, Zhang Y (2000) Uniform design: theory and application. Technometrics. https://doi.org/10.1080/00401706.2000.10486045

    Article  Google Scholar 

  41. Liang YZ, Fang KT, Xu QS (2001) Uniform design and its applications in chemistry and chemical engineering. Chemom Intell Lab Syst. https://doi.org/10.1016/S0169-7439(01)00139-3

    Article  Google Scholar 

  42. Ji YB, Alaerts G, Xu CJ et al (2006) Sequential uniform designs for fingerprints development of Ginkgo biloba extracts by capillary electrophoresis. J Chromatogr A. https://doi.org/10.1016/j.chroma.2006.06.053

    Article  Google Scholar 

  43. Fang KT, Wang Y, Bentler PM (1994) Some applications of number-theoretic methods in statistics. Stat Sci. https://doi.org/10.1214/ss/1177010392

    Article  Google Scholar 

  44. Kolev TM, Velcheva EA, Stamboliyska BA, Spiteller M (2005) DFT and experimental studies of the structure and vibrational spectra of curcumin. Int J Quantum Chem. https://doi.org/10.1002/qua.20469

    Article  Google Scholar 

  45. O’Mahony J, Molinelli A, Nolan K et al (2005) Towards the rational development of molecularly imprinted polymers: 1H NMR studies on hydrophobicity and ion-pair interactions as driving forces for selectivity. Biosens Bioelectron. https://doi.org/10.1016/j.bios.2004.07.036

    Article  Google Scholar 

  46. Lehmann M, Dettling M, Brunner H, Tovar GEM (2004) Affinity parameters of amino acid derivative binding to molecularly imprinted nanospheres consisting of poly ethylene glycol dimethacrylate -co- methacrylic acid. J Chromatogr B Anal Technol Biomed Life Sci 808(1):43–50. https://doi.org/10.1016/j.jchromb.2004.03.068

    Article  CAS  Google Scholar 

  47. Sellergren B, Shea KJ (1993) Influence of polymer morphology on the ability of imprinted network polymers to resolve enantiomers. J Chromatogr A. https://doi.org/10.1016/0021-9673(93)83112-6

    Article  Google Scholar 

  48. Shea JJ (2003) Molecular imprinting-from fundamentals to applications [Book Review]. IEEE Electr Insul Mag. https://doi.org/10.1109/mei.2003.1238726

    Article  Google Scholar 

Download references

Acknowledgments

This study was financially supported by the Scientific Research Projects Coordination of Dokuz Eylül University (Project Number: 2021.KB.FEN.015). Also, author Simge ÖZTÜRK is supported by 100/2000 CoHE PhD Scholarship Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simge Öztürk.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Öztürk, S., Demir, N. & Yurdakoc, M. Magnetically functionalized molecularly imprinted polymer for curcumin adsorption by experimental design. Polym. Bull. 80, 1587–1601 (2023). https://doi.org/10.1007/s00289-022-04136-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-022-04136-y

Keywords

Navigation