Skip to main content
Log in

1,4-Cyclohexanedimethanol-based polyesters derived from biomass: synthesis, thermal properties, crystallization properties, and tensile properties

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

1,4-Cyclohexanedimethanol-based polyesters were synthesized from 1,4-cyclohexanedimethanol (CHDM) and various diacids by melt polycondensation. The results demonstrated all CHDM-based polyesters had high molecular weight and were crystalline polymers. Except for poly(1,4-cylcohexylenedimethylene adipate) (PCA), other CHDM-based polyesters show good toughness (high elongation at break > 150%). Compared with petroleum-based polyester poly(ethylene terephthalate) (PET), poly(1,4-cyclohexylenedimethylene-1,4-cyclohexanedicarboxylate) (PCC) shows similar glass transition temperature (63.7 °C), and tensile properties. However, the processing window of PCC is wider due to its low melting temperature and high initial thermal degradation temperature. In a word, PCC is a kind of promising and potentially bio-based engineering plastic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Weinberger S, Haernvall K, Scaini D, Ghazaryan G, Zumstein MT, Sander M, Pellis A, Guebitz GM (2017) Enzymatic surface hydrolysis of poly(ethylene furanoate) thin films of various crystallinities. Green Chem 19(22):5381–5384

    Article  CAS  Google Scholar 

  2. Zhang R, Wang Y, Wang K, Zheng G, Li Q, Shen C (2013) Crystallization of poly(lactic acid) accelerated by cyclodextrin complex as nucleating agent. Polym Bull 70(1):195–206

    Article  CAS  Google Scholar 

  3. Lee DH, Kwon TY, Kim KH, Kwon ST, Cho DH, Jang SH, Son JS, Lee KB (2014) Anti-inflammatory drug releasing absorbable surgical sutures using poly(lactic-co-glycolic acid) particle carriers. Polym Bull 71(8):1933–1946

    Article  CAS  Google Scholar 

  4. Kunkuma V, Kaki S, Rao B, Prasad R, Prabhavathi D (2013) A simple and facile method for the synthesis of 1-octacosanol. Eur J Lipid Sci Technol 115(8):921–927

    Article  CAS  Google Scholar 

  5. Yu S, Cui J, Wang X, Zhong C, Li Y, Yao J (2020) Preparation of Sebacic Acid via Alkali Fusion of Castor Oil and its Several Derivatives. J Am Oil Chem Soc 97(6):663–670

    Article  CAS  Google Scholar 

  6. Yang Y, Zhang Q, Cao C, Cheng L, Shi Y, Yang W, Hu Y (2014) Solubility and solution thermodynamics of 2,5-thiophenedicarboxylic acid in (water+ethanol) binary solvent mixtures. Thermochim Acta 592:52–57

    Article  CAS  Google Scholar 

  7. Sara B, Iana S, Pedro M, Eva R, Gumersindo F, Teresa M (2018) Environmental sustainability assessment of HMF and FDCA production from lignocellulosic biomass through life cycle assessment (LCA). Holzforschung 73(1):105–115

    Article  Google Scholar 

  8. Banerjee A, Dick G, Yoshino T, Kanan M (2016) Carbon dioxide utilization via carbonate-promoted C-H carboxylation. Nature 531(7593):215–219

    Article  CAS  Google Scholar 

  9. Es D (2013) Rigid biobased building blocks: current developments and outlook. J Renew Mater 1(1):61–72

    Article  Google Scholar 

  10. Carraher J, Pfennig T, Rao R, Shanks B, Tessonnier J (2017) cis, cis-Muconic acid isomerization and catalytic conversion to biobased cyclic-C6-1,4-diacid monomers. Green Chem 19(13):3042–3050

    Article  CAS  Google Scholar 

  11. Salvachúa D, Johnson C, Singer C, Rohrer H, Peterson D, Black B, Knapp A, Beckham G (2018) Bioprocess development for muconic acid production from aromatic compounds and lignin. Green Chem 20(21):5007–5019

    Article  Google Scholar 

  12. Zhu Z, Lu Z, Li B, Guo S (2006) Characterization of bimetallic Ru-Sn supported catalysts and hydrogenation of 1,4-cyclohexanedicarboxylic acid. Appl Catal A: Gen 302(2):208–214

    Article  CAS  Google Scholar 

  13. Hu X, Li G, He G, Chen G (2019) Minisci C-H alkylation of N-heteroarenes with aliphatic alcohols via β-scission of alkoxy radical intermediates. Org Chem Front 6(18):3205–3209

    Article  CAS  Google Scholar 

  14. Kasmi N, Terzopoulou Z, Papageorgiou G, Bikiaris D (2018) Poly(1,4-cyclohexanedimethylene 2,6-naphthalate) polyester with high melting point: effect of different synthesis methods on molecular weight and properties. Express Polym Lett 3(12):12227–12237

    Google Scholar 

  15. Wang J, Liu X, Jia Z, Sun L, Zhu J (2018) Highly crystalline polyesters synthesized from furandicarboxylic acid (FDCA): Potential bio-based engineering plastic. Eur Polym J 109:109379–109390

    Article  Google Scholar 

  16. Chen L, Yee A, Goetz J, Schaefer J (1998) Molecular structure effects on the secondary relaxation and impact strength of a series of polyester copolymer glasses. Macromolecules 31(16):5371–5382

    Article  CAS  Google Scholar 

  17. Wang J, Liu X, Zhang Y, Liu F, Zhu J (2016) Modification of poly(ethylene 2,5-furandicarboxylate) with 1,4-cyclohexanedimethylene: influence of composition on mechanical and barrier properties. Polymer 103:1–8

    Article  CAS  Google Scholar 

  18. Hong S, Min K, Nam B, Park O (2016) High molecular weight bio furan-based co-polyesters for food packaging applications: synthesis, characterization and solid-state polymerization. Green Chem 18(19):5142–5150

    Article  CAS  Google Scholar 

  19. Wang J, Liu X, Jia Z, Sun L, Zhang Y, Zhu J (2018) Modification of poly(ethylene 2,5-furandicarboxylate) (PEF) with 1, 4-cyclohexanedimethanol: influence of stereochemistry of 1,4-cyclohexylene units. Polymer 137:173–185

    Article  Google Scholar 

  20. Kibler C, Bell A, Smith J (1964) Polyesters of 1,4-cyclohexanedimethanol1. J Polym Sci Part A: Gen Pap 2(5):2115–2125

    CAS  Google Scholar 

  21. Celli A, Marchese P, Sisti L, Dumand D, Sullalti S, Totaro G (2013) Effect of 1,4-cyclohexylene units on thermal properties of poly(1,4-cyclohexylenedimethylene adipate) and similar aliphatic polyesters. Polym Int 62(8):1210–1217

    Article  CAS  Google Scholar 

  22. Diao L, Su K, Li Z, Ding C (2016) Furan-based co-polyesters with enhanced thermal properties: poly(1,4-butylene-co-1,4-cyclohexanedimethylene-2,5-furandicarboxylic acid). RSC Adv 6(33):27632–27639

    Article  CAS  Google Scholar 

  23. Wang G, Jiang M, Zhang Q, Wang R, Liang Q, Wang H, Zhou G (2019) Partially bio-based and tough polyesters, poly(ethylene 2,5-thiophenedicarboxylate-co-1,4-cyclohexanedimethylene 2,5-thiophenedicarboxylate)s. Express Polym Lett 13:938–947

    Article  CAS  Google Scholar 

  24. Hussain F, Park S, Jeong J, Kang S, Kim J (2020) Structure–property relationship of poly(cyclohexane 1,4-dimethylene terephthalate) modified with high trans-1,4-cyclohexanedimethanol and 2,6-naphthalene dicarboxylicacid. J Appl Polym Sci 137(32):48950

    Article  CAS  Google Scholar 

  25. Lavilla C, Alla A, Martínez de Ilarduya A, Muñoz-Guerra S (2013) High Tg Bio-Based Aliphatic Polyesters from Bicyclic d-Mannitol. Biomacromol 14(3):781–793

    Article  CAS  Google Scholar 

  26. Liu J, Yee A (1998) enhancing plastic yielding in polyestercarbonate glasses by 1,4-Cyclohexylene linkage addition. Macromolecules 31(22):7865–7870

    Article  CAS  Google Scholar 

  27. Maxwell A, Monnerie L, Ward I (1998) Secondary relaxation processes in polyethylene terephthalate–additive blends: 2 dynamic mechanical and dielectric investigations. Polymer 39(26):6851–6859

    Article  CAS  Google Scholar 

  28. Li L, Yee A (2003) effect of the scale of local segmental motion on nanovoid growth in polyester copolymer glasses. Macromolecules 36(8):2793–2801

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors greatly acknowledge the financial support from Key Laboratory for Comprehensive Energy Saving of Cold Regions Architecture of Ministry of Education, China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guoqiang Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, G., Dong, E., Tang, S. et al. 1,4-Cyclohexanedimethanol-based polyesters derived from biomass: synthesis, thermal properties, crystallization properties, and tensile properties. Polym. Bull. 80, 1603–1614 (2023). https://doi.org/10.1007/s00289-022-04128-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-022-04128-y

Keywords

Navigation