Skip to main content

Advertisement

Log in

Investigation of structural and electrical properties of a biopolymer materials with its potential application in solid-state batteries

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Large-scale energy storage systems with low cost and high performance are needed to allow transition from fossil fuels to renewable energy systems. Solid-state sodium-ion battery is considered as the new generation to replace the commercial lithium-ion battery, due to the abundant sodium resources, cheaper and safer. In this work, new solid polymer electrolyte (SPE) based on corn starch was prepared with a different percentage of sodium bisulfite (NaHSO3) salt via solution casting technique. The SPE was found in an amorphous state and confirmed by using the XRD analyses. The electrical properties of prepared SPE film have been analyzed through electrical impedance spectroscopy and battery analyzer. The highest ionic conductivity is 2.22 × 10–4 Scm−1 at room temperature for a sample containing 15 wt.% NaHSO3 and being used in primary sodium battery fabrication. The cell produced an open circuit voltage of 1.55 V at ambient temperature and discharge characteristics were studied. It is believed that the excellent contribution from the as-prepared electrolyte presents a high potential to be a new innovation in fabrication of energy storage applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Li Y, Yang J, Song J (2017) Design structure model and renewable energy technology for rechargeable battery towards greener and more sustainable electric vehicle. Renew Sustain Energy Rev 74:19–25. https://doi.org/10.1016/j.rser.2017.02.021

    Article  Google Scholar 

  2. Muruganantham B, Gnanadass R, Padhy NP (2017) Challenges with renewable energy sources and storage in practical distribution systems. Renew Sustain Energy Rev 73:125–134. https://doi.org/10.1016/j.rser.2017.01.089

    Article  Google Scholar 

  3. Rayung M, Aung MM, Azhar SC, Abdullah LC, Su’ait MS, Ahmad A, Jamil S (2020) Bio-based polymer electrolytes for electrochemical devices: insight into the ionic conductivity performance. Materials (Basel). https://doi.org/10.3390/ma13040838

    Article  Google Scholar 

  4. Singh R, Bhattacharya B, Gupta M, Rahul Khan ZH, Tomar SK, Singh PK (2017) Electrical and structural properties of ionic liquid doped polymer gel electrolyte for dual energy storage devices. Int J Hydrogen Energy 42(21):14602–14607. https://doi.org/10.1016/j.ijhydene.2017.04.126

    Article  CAS  Google Scholar 

  5. Liu J, Ahmed S, Khanam Z, Wang T, Song S (2020) Ionic liquid-incorporated Zn-Ion conducting polymer electrolyte membranes. Polymers (Basel). https://doi.org/10.3390/polym12081755

    Article  Google Scholar 

  6. Rathnayake RMLL, Perera KS, Vidanapathirana KP (2020) Past, present and future of ionic liquid based polymer electrolytes. AIMS Energy 8(2):231–251. https://doi.org/10.3934/energy.2020.2.231

    Article  CAS  Google Scholar 

  7. Hassan MF, Zainuddin SK, Kamarudin KH, Sheng CK, Abdullah MA (2018) Ion-conducting polymer electrolyte films based on poly (sodium 4-styrenesulfonate) complexed with ammonium nitrate: studies based on morphology, structural and electrical spectroscopy. Malaysian J Analytic Sci. https://doi.org/10.17576/mjas-2018-2202-08

    Article  Google Scholar 

  8. Ni’mah YL, Taufik MF, Maezah A, Kurniawan F (2018) Increasing the ionic conductivity of solid state polymer electrolyte using fly ash as a filler. Malaysian J Fundament Appl Sci 14(4):443–447

    Article  Google Scholar 

  9. Aziz SB, Marf AS, Dannoun EMA, Brza MA, Abdullah RM (2020) The study of the degree of crystallinity, electrical equivalent circuit, and dielectric properties of polyvinyl alcohol (PVA)-based biopolymer electrolytes. Polymers. https://doi.org/10.3390/polym12102184

    Article  Google Scholar 

  10. Yerin S, Yun-Chae J, Myung-Soo P, Dong-Won K (2020) Solid polymer electrolyte supported by porous polymer membrane for all-solid-state lithium batteries. J Membr Sci 603:117995. https://doi.org/10.1016/j.memsci.2020.117995

    Article  CAS  Google Scholar 

  11. Verma ML, Sahu HD (2017) Study on ionic conductivity and dielectric properties of PEO-based solid nanocomposite polymer electrolytes. Ionics 23(9):2339–2350. https://doi.org/10.1007/s11581-017-2063-4

    Article  CAS  Google Scholar 

  12. Misenan MSM, Khiar ASA (2018) Conductivity, dielectric and modulus studies of Methylcellulose-NH4TF polymer electrolyte. Eurasian J Biol Chem Sci 1(2):59–62

    Google Scholar 

  13. Awang FF, Kamarudin KH, Hassan MF (2020) Employing an electrochemical impedance spectroscopy technique to estimate the ion transport parameters in corn starch based solid polymer electrolyte. Int J Adv Res Eng Innov 2(3):78–88

    Google Scholar 

  14. Hassan MF, Awang FF, Azimi NSN, Sheng CK (2020) Starch/MgSO4 solid polymer electrolyte for zinc carbon batteries and its application in a simple circuit. J Sustain Sci Manag 15(8):1–8

    Article  CAS  Google Scholar 

  15. Lian X, Cheng K, Wang D, Zhu W, Wang X (2018) Analysis of crystals of retrograded starch with sharp X-ray diffraction peaks made by recrystallization of amylose and amylopectin. Int J Food Prop 20(sup3):S3224–S3236. https://doi.org/10.1080/10942912.2017.1362433

    Article  CAS  Google Scholar 

  16. Shukur, M. F. (2015). Characterization of ion conducting solid bio_polymer electrolytes based on starch-chitosan blend and application in electrochemical devices. University of Malaya, Malaysia, Dissertation

  17. Tiwari T, Srivastava N, Srivastava PC (2013) Ion dynamics study of potato starch + sodium salts electrolyte system. Int J Electrochem 2013:1–8. https://doi.org/10.1155/2013/670914

    Article  CAS  Google Scholar 

  18. Kumar M, Tiwari T, Srivastava N (2012) Electrical transport behaviour of bio-polymer electrolyte system: potato starch+ammonium iodide. Carbohyd Polym 88(1):54–60. https://doi.org/10.1016/j.carbpol.2011.11.059

    Article  CAS  Google Scholar 

  19. Ramesh S, Shanti R, Morris E, Durairaj R (2013) Utilisation of corn starch in production of ‘green’ polymer electrolytes. Mater Res Innov 15(2):13–18. https://doi.org/10.1179/143307511x13031890747291

    Article  Google Scholar 

  20. Hwang JY, Myung ST, Sun YK (2017) Sodium-ion batteries: present and future. Royal Society of chemistry 46:3485–3856. https://doi.org/10.1039/c6cs00776g

    Article  CAS  Google Scholar 

  21. Ozcan S, Guler A, Cetinkaya T, Guler MO, Akbulut H (2017) Freestanding graphene/MnO2 cathodes for Li-ion batteries. Beilstein J Nanotechnol 8:1932–1938. https://doi.org/10.3762/bjnano.8.193

    Article  CAS  Google Scholar 

  22. Lu Y, Li L, Zhang Q, Niu Z, Chen J (2018) Electrolyte and interface engineering for solid-state sodium batteries. Joule 2(9):1747–1770. https://doi.org/10.1016/j.joule.2018.07.028

    Article  CAS  Google Scholar 

  23. Brutti S, Navarra MA, Maresca G, Panero S, Manzi J, Simonetti E, Appetecchi GB (2019) Ionic liquid electrolytes for room temperature sodium battery systems. Electrochim Acta 306:317–326. https://doi.org/10.1016/j.electacta.2019.03.139

    Article  CAS  Google Scholar 

  24. Abraham KM (2020) How comparable are sodium-ion batteries to lithium-ion counterparts? ACS Energy Lett 5(11):3544–3547. https://doi.org/10.1021/acsenergylett.0c02181

    Article  CAS  Google Scholar 

  25. Qiao L, Judez X, Rojo T, Armand M, Zhang H (2020) Review—polymer electrolytes for sodium batteries. J Electrochem Soc. https://doi.org/10.1149/1945-7111/ab7aa0

    Article  Google Scholar 

  26. Maragani N, Vijayakumar K, Krishnajyothi N (2017) Ac conductivity and thermal studies of pan-nafdoped gel polymer electrolytes for solid state battery applications. Rasayan J Chem 10:665–672. https://doi.org/10.7324/rjc.2017.1021697

    Article  CAS  Google Scholar 

  27. Mejenom AA, Hafiza MN, Isa MIN (2018) X-ray diffraction and infrared spectroscopic analysis of solid biopolymer electrolytes based on dual blend carboxymethyl cellulose-chitosan doped with ammonium bromide. ASM Sci J Special Issue 1:37–46

    Google Scholar 

  28. Li X, Yang L, Shao D, Luo K, Liu L, Wu Z, Wang X (2019) Preparation and application of poly(ethylene oxide)-based all solid-state electrolyte with a walnut-like SiO2 as nano-fillers. J Appl Polym Sci. https://doi.org/10.1002/app.48810

    Article  Google Scholar 

  29. Awang FF, Kamarudin KH, Hassan MF (2021) Effect of sodium bisulfite on corn starch solid polymer electrolyte. Malaysian J Analytic Sci 25(2):224–233

    Google Scholar 

  30. Perumal P, Christopher Selvin P, Selvasekarapandian S, Abhilash KP (2019) Bio-host pectin complexed with dilithium borate based solid electrolytes for polymer batteries. Mater Res Express. https://doi.org/10.1088/2053-1591/ab4724

    Article  Google Scholar 

  31. Azli AA, Manan NSA, Aziz SB, Kadir MFZ (2020) Structural, impedance and electrochemical double-layer capacitor characteristics of improved number density of charge carrier electrolytes employing potato starch blend polymers. Ionics 26(11):5773–5804. https://doi.org/10.1007/s11581-020-03688-1

    Article  CAS  Google Scholar 

  32. Kumar KK, Ravi M, Pavani Y, Bhavani S, Sharma AK, Narasimha Rao VVR (2014) Investigations on PEO/PVP/NaBr complexed polymer blend electrolytes for electrochemical cell applications. J Membr Sci 454:200–211. https://doi.org/10.1016/j.memsci.2013.12.022

    Article  CAS  Google Scholar 

  33. Shahrudin S, Ahmad AH (2016) Corn starch based biopolymer electrolyte doped with Na3PO4. Science Letters 10(2):26–30

    Google Scholar 

  34. Hassan MF, Noruddin N (2018) The effect of lithium perchlorate on poly (sodium 4-styrenesulfonate): studies based on morphology, structural and electrical conductivity. Mater Phys Mech 36:8–17. https://doi.org/10.18720/MPM.3612018_2

    Article  CAS  Google Scholar 

  35. Amran NNA, Manan NSA, Kadir MFZ (2016) The effect of LiCF3SO3 on the complexation with potato starch-chitosan blend polymer electrolytes. Ionics 22(9):1647–1658. https://doi.org/10.1007/s11581-016-1684-3

    Article  CAS  Google Scholar 

  36. Hassan MF, Azimi NSN (2019) Conductivity and transport properties of starch/glycerin-MgSO4 solid polymer electrolytes. Int J Adv Appl Sci 6(5):38–43. https://doi.org/10.21833/ijaas.2019.05.007

    Article  Google Scholar 

  37. Awang FF, Hassan MF, Chan KS, Kamarudin KH (2021) Ion transport study in corn starch-nahso3 based polymer electrolytes. Scientif Res J 18(2):17–36. https://doi.org/10.24191/srj.v18i2.11985

    Article  Google Scholar 

  38. Dave G, Kanchan DK (2018) Dielectric relaxation and modulus studies of PEO-PAM blend based sodium salt electrolyte system. Indian J Pure Appl Phys 56:978–988

    Google Scholar 

  39. Bhide A, Hariharan K (2006) A new polymer electrolyte system (PEO)n:NaPO3. J Power Sourc 159(2):1450–1457. https://doi.org/10.1016/j.jpowsour.2005.11.096

    Article  CAS  Google Scholar 

  40. Anantha P, Hariharan K (2005) Physical and ionic transport studies on poly(ethylene oxide)?NaNO polymer electrolyte system. Solid State Ionics 176(1–2):155–162. https://doi.org/10.1016/j.ssi.2004.07.006

    Article  CAS  Google Scholar 

  41. Shukur MF, Kadir MFZ (2015) Hydrogen ion conducting starch-chitosan blend based electrolyte for application in electrochemical devices. Electrochim Acta 158:152–165. https://doi.org/10.1016/j.electacta.2015.01.167

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to say thank you to the Ministry of Higher Education for the financial support via grant FRGS/1/2019/STG02/UMT/02/1, Vot No. (59586) and Faculty of Science and Marine Environment, University Malaysia Terengganu for the technical support for this research work to be completed.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. F. Hassan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Awang, F.F., Hassan, M.F. & Kamarudin, K.H. Investigation of structural and electrical properties of a biopolymer materials with its potential application in solid-state batteries. Polym. Bull. 80, 1463–1476 (2023). https://doi.org/10.1007/s00289-022-04124-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-022-04124-2

Keywords

Navigation