Skip to main content
Log in

Synthesis of highly spherical Ziegler–Natta catalyst by employing Span 80 as an emulsifier suitable for UHMWPE production

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

A set of MgCl2.EtOH adducts was synthesized by employing two different weight fractions of span 80 (0.5, and 1.0 wt.%) as an emulsifier during adduct preparation step by melt quenching method. Spherical morphology of the prepared adducts was explored using scanning electron microscopy. Further characterization results revealed that emulsifier containing adducts had similar crystalline structure, higher ethanol content and smaller particle sizes. Prepared adduct samples were employed in TiCl4/MgCl2 (Ziegler–Natta) catalysts synthesis which subsequently tested in slurry-phase ethylene polymerization in the presence of triethylaluminium as a cocatalyst. The ethylene polymerization results disclosed that, using emulsifier caused to high active catalyst samples in comparison with emulsifier-free one, where catalyst activity increased up to 40% by using 1.0 wt.% of emulsifier. And as a significant achievement, molecular weight results showed that, synthesized catalysts in the presence of emulsifier led to the production of ultra-high molecular weight poly ethylene with Mv > 1.5 × 106 g/mol at low ethylene pressure of only 2 bar. The production of ultra-high molecular weight poly ethylene together with small particle size feature make the catalyst containing 1 wt.% emulsifier as a good candidate for industrialization step through slurry-phase plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2.
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Scheme 1
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Yang P, Fu Z, Fan Z (2018) 1-Hexene polymerization with supported Ziegler–Natta catalyst: correlation between catalyst particle fragmentation and active center distribution. Mol Catal 447:13–20

    Article  CAS  Google Scholar 

  2. Redzic E et al (2016) Heterogeneous Ziegler–Natta catalysts with various sizes of MgCl 2 crystallites: synthesis and characterization. Iran Polym J 25(4):321–337

    Article  CAS  Google Scholar 

  3. Hanifpour A et al (2016) Study on unsaturated structure and tacticity of poly1-hexene and new copolymer of 1-hexene/5-hexene-1-ol prepared by metallocene catalyst. J Organomet Chem 819:103–108

    Article  CAS  Google Scholar 

  4. Bahri-Laleh N et al (2018) Computational modeling of heterogeneous Ziegler–Natta catalysts for olefins polymerization. Prog Polym Sci 84:89–114

    Article  CAS  Google Scholar 

  5. Hanifpour A et al (2021) Kinetic and microstructural studies of Cp2ZrCl2 and Cp2HfCl2-catalyzed oligomerization of higher α-olefins in mPAO oil base stocks production. Polyolefins J 8(1):31–40

    CAS  Google Scholar 

  6. Kaminsky W, Scholz V (2000) Progress of olefin polymerization by metallocene catalysts. In: Macromolecular symposia. Wiley Online Library.

  7. Corradini P et al (1983) A possible model of catalytic sites for the stereospecific polymerization of alpha-olefins on 1st-generation and supported Ziegler–Natta catalysts. Gazz Chim Ital 113(9–10):601–607

    CAS  Google Scholar 

  8. Torres W et al (1995) Polymer films with tunable surface properties: separation of an oil-in-water emulsion at poly (3-methylthiophene). Langmuir 11(8):2920–2925

    Article  CAS  Google Scholar 

  9. Baier MC, Zuideveld MA, Mecking S (2014) Post-metallocenes in the industrial production of polyolefins. Angew Chem Int Ed 53(37):9722–9744

    Article  CAS  Google Scholar 

  10. Cecchin G, Marchetti E, Baruzzi G (2001) On the mechanism of polypropene growth over MgCl2/TiCl4 catalyst systems. Macromol Chem Phys 202(10):1987–1994

    Article  CAS  Google Scholar 

  11. Pongchan T, Praserthdam P, Jongsomjit B (2020) Temperature effect on propylene polymerization behavior over Ziegler–Natta catalyst with different cocatalyst systems. Mater Res Exp 7(2):025309

  12. Hanifpour A et al (2016) Functional polyolefins: from synthesis to application. Basparesh 6(2):29–42

    Google Scholar 

  13. Hanifpour A et al. (2020) Group IV diamine bis (phenolate) catalysts for 1-decene oligomerization. Mol Catal 493:111047

  14. Hanifpour A et al (2020) Coordinative chain transfer polymerization of 1-decene in the presence of a Ti-based diamine bis (phenolate) catalyst: a sustainable approach to produce low viscosity PAOs. Green Chem 22(14):4617–4626

    Article  CAS  Google Scholar 

  15. Hanifpour A et al. (2021) 1‐Decene oligomerization by new complexes bearing diamine‐diphenolates ligands: Effect of ligand structure. Appl Organometall Chem 35(6): e6227

  16. Chammingkwan P, Terano M, Taniike T (2017) High-throughput synthesis of support materials for olefin polymerization catalyst. ACS Comb Sci 19(5):331–342

    Article  CAS  Google Scholar 

  17. Vestberg T, Denifl P, Wilén CE (2013) Increased rubber content in high impact polypropylene via a sirius ziegler–natta catalyst containing nanoparticles. J Polym Sci Part A Polym Chem 51(9):2040–2048

    Article  CAS  Google Scholar 

  18. Soares JB, Romero J (2018) A monte carlo method to quantify the effect of reactor residence time distribution on polyolefins made with heterogeneous catalysts: part i—catalyst/polymer particle size distribution effects. Macromol React Eng 12(1):1700031

    Article  Google Scholar 

  19. Wu L, Lynch D, Wanke S (1999) Kinetics of gas-phase ethylene polymerization with morphology-controlled MgCl2-supported TiCl4 catalyst. Macromolecules 32(24):7990–7998

    Article  CAS  Google Scholar 

  20. Galli P, Barbè PC, Noristi L (1984) High yield catalysts in olefin polymerization. General outlook on theoretical aspects and industrial uses. Die Angewandte Makromolekulare Chemie Appl Macromol Chem Phys 120(1):73–90

  21. Huang R et al (2004) Spherical MgCl2 supported iron catalyst for ethylene polymerization: effect of the preparation procedure on catalyst activity and the morphology of polyethylene particles. Macromol Chem Phys 205(7):966–972

    Article  CAS  Google Scholar 

  22. Guo L et al. (2021) Investigations of ligand backbone effects on bulky diarylmethyl-based nickel (II) and palladium (II) catalyzed ethylene polymerization and copolymerization. J Organometall Chem 952:122046

  23. Tran QH, Brookhart M, Daugulis O (2020) New neutral nickel and palladium sandwich catalysts: synthesis of ultra-high molecular weight polyethylene (UHMWPE) via highly controlled polymerization and mechanistic studies of chain propagation. J Am Chem Soc 142(15):7198–7206

    Article  CAS  Google Scholar 

  24. Kenyon P, Wörner M, Mecking S (2018) Controlled polymerization in polar solvents to ultrahigh molecular weight polyethylene. J Am Chem Soc 140(21):6685–6689

    Article  CAS  Google Scholar 

  25. Dai S, Chen C (2020) A self-supporting strategy for gas-phase and slurry-phase ethylene polymerization using late-transition-metal catalysts. Angew Chem 132(35):14994–15000

    Article  Google Scholar 

  26. Monji M et al (2009) Synthesis of highly improved Ziegler–Natta catalyst. J Appl Polym Sci 112(6):3663–3668

    Article  CAS  Google Scholar 

  27. Bazvand R et al (2018) A new strategy to increase comonomer incorporation in LLDPE synthesis using Ziegler–Natta catalysts. Communications In Catalysis 1(1):1–10

    Google Scholar 

  28. Rahmatiyan S et al (2019) Different behaviors of metallocene and Ziegler–Natta catalysts in ethylene/1, 5-hexadiene copolymerization. Polym Int 68(1):94–101

    Article  CAS  Google Scholar 

  29. Hadian N et al. (2014) Storage time effect on dynamic structure of MgCl2. nEtOH adducts in heterogeneous Ziegler–Natta catalysts. Polyolefins J 1(1):33–41

  30. Xu R et al (2007) Preparation of spherical MgCl2-supported bis (phenoxy-imine) zirconium complex for ethylene polymerization. J Mol Catal A: Chem 263(1–2):86–92

    Article  CAS  Google Scholar 

  31. Thushara K et al (2011) Toward an understanding of the molecular level properties of ziegler−natta catalyst support with and without the internal electron donor. J Phys Chem C 115(5):1952–1960

    Article  CAS  Google Scholar 

  32. Hanifpour A, Bahri-Laleh N, Nekoomanesh-Haghighi M (2021) Single-phase photo-cross-linkable adhesive synthesized from methacrylic acid-grafted 1-decene/9-decene-1-ol cooligomer. J Appl Polym Sci 138(2):49654

    Article  CAS  Google Scholar 

  33. Hanifpour A, Bahri-Laleh N, Nekoomanesh-Haghighi M (2020) Preparation of novel, liquid, solvent-free, polyolefin-based adhesives. Polym Adv Technol 31(5):922–931

    Article  CAS  Google Scholar 

  34. Hanifpour A, Bahri-Laleh N, Nekoomanesh-Haghighi M (2018) Preparation of novel liquid, solvent-free, polyalfaolefin-based adhesives. In: International seminar on polymer science and technology. Springer.

  35. Hanifpour A, Bahri-Laleh N (2019) Effects of the molecular weight and C–C functionality of poly 1-hexene on the properties of poly 1-hexene-based high impact polystyrene. J Appl Polym Sci 136(10):47169

    Article  Google Scholar 

  36. Patthamasang S, Jongsomjit B, Praserthdam P (2011) Effect of EtOH/MgCl2 molar ratios on the catalytic properties of MgCl2-SiO2/TiCl4 Ziegler–Natta catalyst for ethylene polymerization. Molecules 16(10):8332–8342

    Article  CAS  Google Scholar 

  37. Hanifpour A et al (2017) Synthesis and characterization of poly1-hexene/silica nanocomposites. Polym Testing 61:27–34

    Article  CAS  Google Scholar 

  38. Hanifpour A, Bahri-Laleh N, Mirmohammadi SA (2019) Silica-grafted poly1-hexene: a new approach to prepare polyethylene/silica nanocomposites. Polym Compos 40(3):1053–1060

    Article  CAS  Google Scholar 

  39. Hanifpour A et al. (2016) Poly1‐hexene: New impact modifier in HIPS technology. J Appl Polym Sci 133(35)

  40. Hanifpour A, Bahri-Laleh N, Nekoomanesh-Haghighi M (2020) Methacrylate-functionalized POSS as an efficient adhesion promoter in olefin-based adhesives. Polym Eng Sci 60(12):2991–3000

    Article  CAS  Google Scholar 

  41. Khanjani J et al. (2020) Waterborne acrylic-styrene/PDMS coatings formulated by different particle sizes of PDMS emulsions for outdoor applications. Prog Organic Coati. 141:105267

  42. Dehghani S et al (2020) Highly efficient supported AlCl3-based cationic catalysts to produce polyα-olefin oil base stocks. J Appl Polym Sci 137(22):49018

    Article  CAS  Google Scholar 

  43. D’Amore M et al (2016) Surface investigation and morphological analysis of structurally disordered MgCl2 and MgCl2/TiCl4 Ziegler–Natta catalysts. ACS Catal 6(9):5786–5796

    Article  Google Scholar 

  44. Almeida LA, Marques MDFV (2012) Synthesis of a TiCl4 Ziegler–Natta Catalyst Supported on Spherical MgCl2· nEtOH for the Polymerization of Ethylene and Propylene. Macromol Reaction Eng 6(1):57–64

  45. Wang L et al (2006) Preparation of novel MgCl2-adduct supported spherical Ziegler–Natta catalyst for α-olefin polymerization. J Appl Polym Sci 99(3):945–948

    Article  CAS  Google Scholar 

  46. Mikenas TB, Koshevoy EI, Zakharov VA (2017) Effect of the structure of titanium–magnesium catalysts on the morphology of polyethylene produced. J Polym Sci Part A Polym Chem 55(14):2298–2308

    Article  CAS  Google Scholar 

  47. Zhang H-X et al (2011) Preparation of ultra high molecular weight polyethylene with MgCl 2/TiCl 4 catalyst: effect of internal and external donor on molecular weight and molecular weight distribution. Polym Bull 66(5):627–635

    Article  CAS  Google Scholar 

  48. Jones R, Armoush M (2009) Catalysts for UHMWPE. In: Macromolecular symposia. Wiley Online Library

  49. Jamjah R et al. (2008) Synthesizing UHMWPE Using Ziegler–Natta Catalyst System of MgCl2 (ethoxide type)/TiCl4/tri‐isobutylaluminum. In: Macromolecular symposia. Wiley Online Library

  50. Abazari M et al. (2021) Synthesis and evaluation of a new three-metallic high-performance Ziegler–Natta catalyst for ethylene polymerization: experimental and computational studies. Polym Bull, pp 1–16

  51. Bahri-Laleh N et al (2018) H 2 effect in Chevron-Phillips ethylene trimerization catalytic system: an experimental and theoretical investigation. Polym Bull 75(8):3555–3565

    Article  CAS  Google Scholar 

  52. Böhm LL (2003) The ethylene polymerization with Ziegler catalysts: fifty years after the discovery. Angew Chem Int Ed 42(41):5010–5030

    Article  Google Scholar 

  53. Mülhaupt R (2003) Catalytic polymerization and post polymerization catalysis fifty years after the discovery of Ziegler’s catalysts. Macromol Chem Phys 204(2):289–327

    Article  Google Scholar 

  54. Severn JR et al (2005) “Bound but not gagged” immobilizing single-site α-olefin polymerization catalysts. Chem Rev 105(11):4073–4147

    Article  CAS  Google Scholar 

  55. Nazari D et al (2020) Curing, mechanical, thermomechanical and rheological properties of new poly (1-hexene-co-hexadiene) rubber. J Polym Res 27(5):1–9

    Article  Google Scholar 

Download references

Acknowledgements

This work has been supported by the Center for International Scientific Studies and Collaboration (CISSC), Ministry of Science Research and Technology.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ahad Hanifpour or Naeimeh Bahri-Laleh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rezaeian, A., Hanifpour, A., Teimoury, H.R. et al. Synthesis of highly spherical Ziegler–Natta catalyst by employing Span 80 as an emulsifier suitable for UHMWPE production. Polym. Bull. 80, 1625–1639 (2023). https://doi.org/10.1007/s00289-022-04122-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-022-04122-4

Keywords

Navigation