Skip to main content
Log in

Low-molar-mass and oligomeric derivatives of carbazole and triphenylamine containing thiazolo[5,4-d]thiazole moieties

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Polymers and low-molar-mass-compounds containing donor and acceptor moieties are recently of great interest for the application in organic light-emitting diodes and other optoelectronic devices. Here, we report on the synthesis of oligomers containing carbazole or triphenylamine units as donors and thiazolo[5,4-d]thiazole as an acceptor moiety and on the corresponding low-molar-mass model compounds. In order to control the molecular weights and solubility of oligomeric compounds obtained via condensation reaction, the different ratios of mono- and diformyl derivatives were chosen. Thermal, optical, photophysical and electrochemical properties of the synthesized compounds were investigated. The initial thermal decomposition temperatures of the synthesized oligomeric compounds were in the range of 218–289 °C. Glass transition temperatures of the synthesized oligomeric compounds ranged from 109 to 174 °C. They absorb light in the range of 402–442 nm and emit in the region from 472 to 533 nm. The ionization potential values of the synthesized compounds ranged from 5.29 to 5.48 eV as it was established by cyclic voltammetry. Relatively wide ranges of the characteristics obtained show that purposeful manipulation of the conditions of the synthesis of the donor disubstituted thiazolo[5,4-d]thiazoles can lead to the preparation of the electroactive compounds with the desired sets of the properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Abbaszadeh D, Blom PWM (2016) Efficient blue polymer light-emitting diodes with electron-dominated transport due to trap dilution. Adv Electron Mater 2:1500406. https://doi.org/10.1002/aelm.201500406

    Article  CAS  Google Scholar 

  2. Wei C, Tang Z, Zhang W, Huang J, Zhou Y, Wang L, Yu G (2020) Molecular engineering of (E)-1,2-bis(3-cyanothiophene-2-yl)ethene-based polymeric semiconductors for unipolar n-channel field-effect transistors. Polym Chem 11:7340–7348. https://doi.org/10.1039/D0PY01399D

    Article  CAS  Google Scholar 

  3. Max JB, Nabiyan A, Eichhorn J, Schacher FH (2021) Triple-responsive polyampholytic graft copolymers as smart sensors with varying output. Macromol Rapid Commun 42:2000671. https://doi.org/10.1002/marc.202000671

    Article  CAS  Google Scholar 

  4. Lv L, Dang W, Wu X, Chen H, Wang T, Qin L, Wei Z, Zhang K, Shen G, Huang H (2020) Flexible short-wave infrared image sensors enabled by high performance polymeric photodetectors. Macromolecules 53:10636–10643. https://doi.org/10.1021/acs.macromol.0c01988

    Article  CAS  Google Scholar 

  5. Dutta P, Yang W, Park H, Baek M, Lee YS, Lee SH (2011) Synthesis and characterization of conjugated copolymer containing 2,5-bis(3-decylthiophen-2-yl)thiazolo[5,4-d]thiazole and 2,6-[(1,5-didecyloxy)naphthalene for polymer solar cells. Synth Met 161:1582–1589. https://doi.org/10.1016/j.synthmet.2011.05.022

    Article  CAS  Google Scholar 

  6. Murad AR, Iraqi A, Aziz SB, Abdullah SN, Brza MA (2020) Conducting polymers for optoelectronic devices and organic solar cells: a review. Polymers 12:2627. https://doi.org/10.3390/polym12112627

    Article  CAS  Google Scholar 

  7. Cheng P, Shi Q, Lin Y, Li Y, Zhan X (2013) Evolved structure of thiazolothiazole based small molecules towards enhanced efficiency in organic solar cells. Org Electron 14:599–606. https://doi.org/10.1016/j.orgel.2012.11.026

    Article  CAS  Google Scholar 

  8. Dessi A, Calamante M, Sinicropi A, Parisi ML, Vesce L, Mariani P, Taheri B, Ciocca M, Di Carlo A, Zani L, Mordini A, Reginato G (2020) Thiazolo[5,4-d]thiazole-based organic sensitizers with improved spectral properties for application in greenhouse-integrated dye-sensitized solar cells. Sustain Energy Fuels 4:2309–2321. https://doi.org/10.1039/D0SE00124D

    Article  CAS  Google Scholar 

  9. Sayresmith NA, Saminathan A, Sailer JK, Patberg SM, Sandor K, Krishnan Y, Walter MG (2019) Photostable voltage-sensitive dyes based on simple, solvatofluorochromic, asymmetric thiazolothiazoles. J Am Chem Soc 141:18780–18790. https://doi.org/10.1021/jacs.9b08959

    Article  CAS  Google Scholar 

  10. Sathiyan G, Ranjan R, Ranjan S, Garg A, Gupta RK, Singh A (2019) Dicyanovinylene and thiazolo[5,4-d]thiazole core containing D−A−D type hole-transporting materials for spiro-OMeTAD-free perovskite solar cell applications with superior atmospheric stability. ACS Appl Energy Mater 2:7609–7618. https://doi.org/10.1021/acsaem.9b01598

    Article  CAS  Google Scholar 

  11. Wang K, Zhang H, Chen S, Yang G, Zhang J, Tian W, Su Z, Wang Y (2014) Organic polymorphs: one-compound-based crystals with molecular-conformation- and packing-dependent luminescent properties. Adv Mater 26:6168–6173. https://doi.org/10.1002/adma.201401114

    Article  CAS  Google Scholar 

  12. Bevk D, Marin L, Lutsen L, Vanderzandeab D, Maes W (2013) Thiazolo[5,4-d]thiazoles-promising building blocks in the synthesis of semiconductors for plastic electronics. RSC Adv 3:11418–11431. https://doi.org/10.1039/C3RA40851E

    Article  CAS  Google Scholar 

  13. Li W, Huang X, Zeng T, Liu YA, Hu W, Yang H, Zhang YB, Wen K (2021) Thiazolo[5,4-d]thiazole-based donor-acceptor covalent organic framework for sunlight-driven hydrogen evolution. Angew Che Int Ed 60:1869–1874. https://doi.org/10.1002/anie.202014408

    Article  CAS  Google Scholar 

  14. Wang Y, Liu H, Pan Q, Ding N, Yang C, Zhang Z, Jis C, Li Z, Liu J, Zhao Y (2020) Construction of thiazolo[5,4-d]thiazole-based two-dimensional network for efficient photocatalytic Co2 reduction. ACS Appl Mater Interfaces 12:46483–46489. https://doi.org/10.1021/acsami.0c12173

    Article  CAS  Google Scholar 

  15. Wex B, Kaafarani BR (2017) Perspective on carbazole-based organic compounds as emitters and hosts in TADF applications. J Mater Chem C 5:8622–8653. https://doi.org/10.1039/C7TC02156A

    Article  CAS  Google Scholar 

  16. Yen HJ, Liou GS (2019) Design and preparation of triphenylamine-based polymeric materials towards emergent optoelectronic applications. Prog Polym Sci 89:250–287. https://doi.org/10.1016/j.progpolymsci.2018.12.001

    Article  CAS  Google Scholar 

  17. Ledwon P (2019) Recent advances of donor-acceptor type carbazole-based molecules for light emitting applications. Org Electron 75:105422. https://doi.org/10.1016/j.orgel.2019.105422

    Article  CAS  Google Scholar 

  18. Blouin N, Leclerc M (2008) Poly(2,7-carbazole)s: Structure−property relationships. Acc Chem Res 41:1110–1119. https://doi.org/10.1021/ar800057k

    Article  CAS  Google Scholar 

  19. Gao L, Schloemer TH, Zhang F, Chen X, Xiao Ch, Zhu K, Sellinger A (2020) Carbazole-based hole-transport materials for high-efficiency and stable perovskite solar cells. ACS Appl Energy Mater 3:4492–4498. https://doi.org/10.1021/acsaem.0c00179

    Article  CAS  Google Scholar 

  20. Zhao F, Chen Z, Fan CB, Liu G, Pu SZ (2019) Aggregation-induced emission (AIE)-active highly emissive novel carbazole-based dyes with various solid-state fluorescence and reversible mechanofluorochromism characteristics. Dyes Pigm 164:390–397. https://doi.org/10.1016/j.dyepig.2019.01.057

    Article  CAS  Google Scholar 

  21. Rodriguez-Seco C, Mendez M, Roldan-Carmona C, Pudi R, Nazeeruddin MK, Palomares EJ (2020) Minimization of carrier losses for efficient perovskite solar cells through structural modification of triphenylamine derivatives. Angew Chem Int Ed 59:5303–5307. https://doi.org/10.1002/anie.201915022

    Article  CAS  Google Scholar 

  22. Ostrauskaite J, Voska V, Antulis J, Gaidelis V, Jankauskas V, Grazulevicius JV (2002) High hole mobilities in carbazole-based glass-forming hydrazones. J Mater Chem 12:3469–3474. https://doi.org/10.1039/B209732J

    Article  CAS  Google Scholar 

  23. Gudeika D, Michaleviciute A, Grazulevicius JV, Lygaitis R, Grigalevicius S, Jankauskas V, Miasojedovas A, Jursenas S, Sini G (2012) Structure properties relationship of donor–acceptor derivatives of triphenylamine and 1,8-naphthalimide. J Phys Chem C 116:14811–14819. https://doi.org/10.1021/jp303172b

    Article  CAS  Google Scholar 

  24. Leandri V, Ruffo R, Trifiletti V, Abbotto A (2013) Asymmetric tribranched dyes: an intramolecular cosensitization approach for dye-sensitized solar cells. Eur J Org Chem 30:6793–6801. https://doi.org/10.1002/ejoc.201300962

    Article  CAS  Google Scholar 

  25. Kanal F, Ruetzel S, Lu H, Moos M, Holzapfel M, Brixner T, Lambert Ch (2014) Measuring charge-separation dynamics via oligomer length variation. J Phys Chem C 118:23586–23598. https://doi.org/10.1021/jp508032k

    Article  CAS  Google Scholar 

  26. Harwood LM, Moody CJ (1989) Experimental organic chemistry: principles and practice. Blackwell, Oxford

    Google Scholar 

  27. Malinauskas T, Daskeviciene M, Kazlauskas K, Su HC, Grazulevicius JV, Jursenas S, Wu CC, Getautis V (2011) Multifunctional red phosphorescent bis-cyclometallated iridium complexes based on 2-phenyl-1,2,3-benzotriazole ligand and carbazolyl moieties. Tetrahedron 67:1852–1861. https://doi.org/10.1016/j.tet.2011.01.026

    Article  CAS  Google Scholar 

  28. Mahdavifar Z, Tajdinan S, Shakerzadeh E (2019) Exploring the electro-optical properties of conjugated polymers based on oligo-selenophene and oligo(3,4-ethylenedioxyselenophene). Appl Organometal Chem 33:e4962. https://doi.org/10.1002/aoc.4962

    Article  CAS  Google Scholar 

  29. Nasiri S, Cekaviciute M, Simokaitiene J, Petrauskaite A, Volyniuk D, Andruleviciene V, Bezvikonnyi O, Grazulevicius JV (2019) Carbazole derivatives containing one or two tetra-/triphenylethenyl units as efficient hole-transporting oled emitters. Dyes Pigm 168:93–102. https://doi.org/10.1016/j.dyepig.2019.04.045

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This project has received funding from the Research Council of Lithuania (LMTLT), Contract No S-LU-20-12.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juozas Vidas Grazulevicius.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 2352 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dabuliene, A., Dainyte, A., Andruleviciene, V. et al. Low-molar-mass and oligomeric derivatives of carbazole and triphenylamine containing thiazolo[5,4-d]thiazole moieties. Polym. Bull. 80, 1477–1493 (2023). https://doi.org/10.1007/s00289-022-04118-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-022-04118-0

Keywords

Navigation