Skip to main content

Advertisement

Log in

The investigation of chlorpyrifos (Cpy) detection of PEDOT:PSS-MXene(Ti2CTX)-BSA-GO composite using P-ISFET reduction method

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

MXenes are two-dimensional materials that are attractive for applications as sensors because they possess high conductivity, super hydrophilicity and high surface area. There already exist substantial researches on the use of Ti3C2Tx based MXenes as electrochemical biosensors, but in contrast Ti2CTX based MXenes are rarely discussed due to their inherent resistance instability. However, the use of Ti2CTX based MXenes is still worth exploring as theoretical studies have shown that Ti2CTX possesses a significantly lower bandgap compared to many other MXenes structures. Herein, this study examines the use of Ti2CTX MXene structures in a P-channel ion-sensitive field-effect transistor (P-ISFET) for the detection of Chlorpyrifos (Cpy). Compositing the PEDOT:PSS thin film with delaminated Ti2CTX MXenes flakes with graphene oxide (GO) and bovine serum albumin (BSA) allows it to maintain its sheet resistance at around 100 kOhm for 3 days. Interestingly when using the composite thin film, the minimum threshold voltage required to observe Cpy electroreduction is −0.1 V. This is much lower than that when using titanium dioxide (TiO2), which is −1.5 V. Composite thin films containing Ti2CTX MXene are found to detect Cpy with higher sensitivity compared to thin films without MXene. This is because the presence of Mxene in the PEDOT:PSS composite thin films improves the surface area available for Cpy detection. This study highlights the potential of Ti2CTx MXene-BSA composite as a promising 2D material for enzyme-free CPY detection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Seung KH, Kim DH, Kim TW (2021) Organic light-emitting devices based on conducting polymer treated with benzoic acid. Sci Rep 11(1):1–9

    Google Scholar 

  2. Galliano S, Bella F, Bonomo M, Giordano F, Grätzel M, Viscardi G, Hagfeldt A, Gerbaldi C, Barolo C (2021) Xanthan‐based hydrogel for stable and efficient quasi‐solid truly aqueous dye‐sensitized solar cell with cobalt mediator. Solar Rrl, p 2000823

  3. Galliano S, Bella F, Bonomo M, Viscardi G, Gerbaldi C, Boschloo G, Barolo C (2020) Hydrogel electrolytes based on xanthan gum: green route towards stable dye-sensitized solar cells. Nanomaterials 10(8):1585

    Article  CAS  Google Scholar 

  4. Fagiolari L, Varaia E, Mariotti N, Bonomo M, Barolo C, Bella F (2021) Poly (3, 4‐ethylenedioxythiophene) in dye‐sensitized solar cells: toward solid‐state and platinum‐free photovoltaics. Adv Sustain Syst, p 2100025

  5. Amici J, Torchio C, Versaci D, Dessantis D, Marchisio A, Caldera F, Bella F, Francia C, Bodoardo S (2021) Nanosponge-based composite gel polymer electrolyte for safer Li-O2 batteries. Polymers 13(10):1625

    Article  CAS  Google Scholar 

  6. Piana G, Ricciardi M, Bella F, Cucciniello R, Proto A, Gerbaldi C (2020) Poly (glycidyl ether) recycling from industrial waste and feasibility study of reuse as electrolytes in sodium-based batteries. Chem Eng J 382:122934

    Article  CAS  Google Scholar 

  7. Bella F, Porcarelli L, Mantione D, Gerbaldi C, Barolo C, Grätzel M, Mecerreyes Da (2021) A water-based and metal-free dye solar cell exceeding 7% efficiency using a cationic poly (3, 4-ethylenedioxythiophene) derivative. Chem Sci 11(6):1485–1493

    Article  Google Scholar 

  8. Xu S, Shi XL, Dargusch M, Di C, Zou J, Chen ZG (2020) Conducting polymer-based flexible thermoelectric materials and devices: from mechanisms to applications. Prog Mater Sci 121:100840

    Article  Google Scholar 

  9. Chen J, Zhu Y, Huang J, Zhang J, Pan D, Zhou J, Guo Z (2021) Advances in responsively conductive polymer composites and sensing applications. Polym Rev 61(1):157–193

    Article  CAS  Google Scholar 

  10. Xu S, Shi XL, Dargusch M, Di C, Zou J, Chen ZG (2021) Conducting polymer-based flexible thermoelectric materials and devices: from mechanisms to applications. Prog Mater Sci 121:100840

    Article  CAS  Google Scholar 

  11. Cui J, Xing F, Luo H, Qin J, Li Y, Zhong Y, Wei F et al (2021) General synthesis of hollow mesoporous conducting polymers by dual-colloid interface co-assembly for high-energy-density micro-supercapacitors. J Energy Chem 62:145–152

    Article  CAS  Google Scholar 

  12. Zheng X, Shen J, Hu Q, Nie W, Wang Z, Zou L, Li C (2021) Vapor phase polymerized conducting polymer/MXene textiles for wearable electronics. Nanoscale 13(3):1832–1841

    Article  CAS  Google Scholar 

  13. Luo X, Yang G, Schubert DW (2021) Electrically conductive polymer composite containing hybrid graphene nanoplatelets and carbon nanotubes: synergistic effect and tunable conductivity anisotropy. Adv Comp Hybrid Mater, pp 1–13

  14. Song P, Liu B, Qiu H, Shi X, Cao D, Gu J (2021) MXenes for polymer matrix electromagnetic interference shielding composites: a review. Comp Commun, p 100653

  15. Wang M, Tang XH, Cai JH, Wu H, Shen JB, Guo SY (2021) Construction, mechanism and prospective of conductive polymer composites with multiple interfaces for electromagnetic interference shielding: a review. Carbon

  16. Zhu X, Hu Y, Wu G, Chen W, Bao N (2021) Two-dimensional nanosheets-based soft electro-chemo-mechanical actuators: recent advances in design, construction, and applications. ACS nano

  17. Won P, Jeong S, Majidi C, Ko SH (2021) Recent advances in liquid metal based wearable electronics and materials. iScience, p 102698

  18. Zhao B, Hamidinejad M, Wang S, Bai P, Che R, Zhang R, Park CB (2021) Advances in electromagnetic shielding properties of composite foams. J Mater Chem A 9(14):8896–8949

    Article  CAS  Google Scholar 

  19. Qin S, Usman KAS, Hegh D, Seyedin S, Gogotsi Y, Zhang J, Razal JM (2021) Development and applications of MXene-based functional fibers. ACS Appl Mater Interfaces 13(31):36655–36669

    Article  CAS  Google Scholar 

  20. Usman KAA, Qin S, Henderson LC, Zhang J, Hegh D, Razal JM (2021) Ti3C2Tx MXene: from dispersions to multifunctional architectures for diverse applications. Mater Horizons

  21. Moses OA, Gao L, Zhao H, Wang Z, Adam ML, Sun Z, Yu X (2021) 2D materials inks toward smart flexible electronics. Materi Today

  22. Zhan X, Si C, Zhou J, Sun Z (2020) MXene and MXene-based composites: synthesis, properties and environment-related applications. Nanoscale Horizons 5:235–258

    Article  CAS  Google Scholar 

  23. Naguib M, Mochalin VN, Barsoum MW, Gogotsi Y (2014) 25th anniversary article: MXenes: a new family of two-dimensional materials. Adv Mater 26:992–1005

    Article  CAS  Google Scholar 

  24. Xie Y, Dall’Agnese Y, Naguib M, Gogotsi Y, Barsoum MW, Zhuang HL, Kent PRC (2014) Prediction and characterization of MXene nanosheet anodes for non-lithium-ion batteries. ACS Nano 8:9606–9615

    Article  CAS  Google Scholar 

  25. Xie Y, Naguib M, Mochalin VN, Barsoum MW, Gogotsi Y, Yu X, Nam K-W, Yang X-Q, Kolesnikov AI, Kent PRC (2014) Role of surface structure on Li-ion energy storage capacity of two-dimensional transition-metal carbides. J Am Chem Soc 136:6385–6394

    Article  CAS  Google Scholar 

  26. Jastrzębska AM, Karwowska E, Wojciechowski T, Ziemkowska W, Rozmysłowska A, Chlubny L, Olszyna A (2019) The atomic structure of Ti 2 C and Ti 3 C 2 MXenes is responsible for their antibacterial activity toward E. coli bacteria. J Mater Eng Perform 28:1272–1277

    Article  Google Scholar 

  27. Lai S, Jeon J, Jang SK, Xu J, Choi YJ, Park J-H, Hwang E, Lee S (2015) Surface group modification and carrier transport properties of layered transition metal carbides (Ti2CTx, T:–OH,–F and–O). Nanoscale 7:19390–19396

    Article  CAS  Google Scholar 

  28. Mohan SV, Sirisha K, Rao NC, Sarma PN, Reddy SJ (2004) Degradation of chlorpyrifos contaminated soil by bioslurry reactor operated in sequencing batch mode: bioprocess monitoring. J Hazard Mater 116:39–48

    Article  CAS  Google Scholar 

  29. Gouveia JD, Novell-Leruth G, Reis PMLS, Viñes F, Illas F, Gomes JRB (2020) First-principles calculations on the adsorption behavior of amino acids on a titanium carbide MXene. ACS Appl Bio Mater 3:5913–5921

    Article  CAS  Google Scholar 

  30. Prats H, McAloone H, Viñes F, Illas F (2020) Ultra-highly selective biogas upgrading through porous MXenes. J Mater Chem A 8:12296–12300

    Article  CAS  Google Scholar 

  31. Zhao S, Kang W, Xue J (2014) Role of strain and concentration on the Li adsorption and diffusion properties on Ti2C layer. J Phys Chem C 118:14983–14990

    Article  CAS  Google Scholar 

  32. He Y, Zhou X, Zhou L, Zhang X, Ma L, Jiang Y, Gao J (2020) Self-reduction prussian blue on Ti3C2Tx MXenes nanosheets as dual-functional nanohybrid for hydrogen peroxide and pesticide sensing. Ind Eng Chem Res

  33. Kalambate PK, Gadhari NS, Li X, Rao Z, Navale ST, Shen Y, Patil VR, Huang Y (2019) Recent advances in MXene–based electrochemical sensors and biosensors. TrAC Trends Anal Chem 120:115643

    Article  CAS  Google Scholar 

  34. Zhao F, Yao Y, Jiang C, Shao Y, Barceló D, Ying Y, Ping J (2020) Self-reduction bimetallic nanoparticles on ultrathin MXene nanosheets as functional platform for pesticide sensing. J Hazard Mater 384:121358

    Article  CAS  Google Scholar 

  35. Gao G, O’Mullane AP, Du A (2017) 2D MXenes: a new family of promising catalysts for the hydrogen evolution reaction. ACS Catal 7:494–500

    Article  CAS  Google Scholar 

  36. Solomon KR, Williams WM, Mackay D, Purdy J, Giddings JM, Giesy JP (2014) Properties and uses of chlorpyrifos in the United States. Ecol Risk Assess Chlorpyrifos Terr Aquat Syst 8:13–34

    Google Scholar 

  37. Wang D, Singhasemanon N, Goh KS (2016) A statistical assessment of pesticide pollution in surface waters using environmental monitoring data: Chlorpyrifos in Central Valley, California. Sci Total Environ 571:332–341

    Article  CAS  Google Scholar 

  38. Mohan HKSV, Chee WK, Li Y, Nayak S, Poh CL, Thean AVY (2020) A highly sensitive graphene oxide based label-free capacitive aptasensor for vanillin detection. Mater Des 186:108208

    Article  Google Scholar 

  39. Wang L, Song H, Yuan L, Li Z, Zhang Y, Gibson JK, Zheng L, Chai Z, Shi W (2018) Efficient U (VI) reduction and sequestration by Ti2CT x MXene. Environ Sci Technol 52:10748–10756

    Article  CAS  Google Scholar 

  40. Kugimiya A, Babe F (2011) Phosphate ion sensing using molecularly imprinted artificial polymer receptor. Polym Bull 67(9):2017–2024

    Article  CAS  Google Scholar 

  41. Berchmans S, Balamurugan T (2021) Immobilization of molecular assemblies on 2D nanomaterials for electrochemical biosensing applications. In: Immobilization strategies. Springer, Cham, pp 435–474

  42. Liu F, Nie P, He X, Liu X (2021) Soil information sensing technology. In: Agricultural internet of things. Springer, Cham, pp 99–120

  43. Mohd Razib MS, Latip W, Abdul Rashid JI, Knight VF, Wan Yunus WMZ, Ong KK, Mohd Noor SA (2021) An enzyme-based biosensor for the detection of organophosphate compounds using mutant phosphotriesterase immobilized onto reduced graphene oxide. J Chem

  44. Li Y, Peng Z, Holl NJ, Hassan MR, Pappas JM, Wei C, Wu C (2021) MXene–graphene field-effect transistor sensing of influenza virus and SARS-CoV-2. ACS Omega 6(10):6643–6653

    Article  CAS  Google Scholar 

  45. Ranjan P, Thomas V, Kumar P (2021) 2D materials as a diagnostic platform for the detection and sensing of the SARS-CoV-2 virus: a bird’s-eye view. J Mater Chem B 9:4608–4619

    Article  CAS  Google Scholar 

  46. Eklund P, Rosen J, Persson POÅ (2017) Layered ternary M n+ 1AX n phases and their 2D derivative MXene: an overview from a thin-film perspective. J Phys D Appl Phys 50:113001

    Article  Google Scholar 

  47. Zhou T, Wu C, Wang Y, Tomsia AP, Li M, Saiz E, Fang S, Baughman RH, Jiang L, Cheng Q (2020) Super-tough MXene-functionalized graphene sheets. Nat Commun 11:1–11

    CAS  Google Scholar 

  48. Hsieh S-R, Reddy PM, Chang C-J, Kumar A, Wu W-C, Lin H-Y (2016) Exploring the behavior of bovine serum albumin in response to changes in the chemical composition of responsive polymers: Experimental and simulation studies. Polymers (Basel) 8:238

    Article  Google Scholar 

  49. Carter DC, Ho JX (1994) Structure of serum albumin. In: Adv Protein Chem. Elsevier, London, pp 153–203

  50. Hirayama K, Akashi S, Furuya M, Fukuhara K (1990) Rapid confirmation and revision of the primary structure of bovine serum albumin by ESIMS and Frit-FAB LC/MS. Biochem Biophys Res Commun 173:639–646

    Article  CAS  Google Scholar 

  51. Kubal G, Sadler PJ, Evans RW (1992) Sequential binding of aluminum (3+) to the C-and N-lobes of human serum transferrin detected by proton NMR spectroscopy. J Am Chem Soc 114:1117–1118

    Article  CAS  Google Scholar 

  52. Hampitak P, Melendrez D, Iliut M, Fresquet M, Parsons N, Spencer B, Jowitt T, Vijayaraghavan A (2020) Protein interactions and conformations on graphene-based materials mapped using quartz-crystal microbalance with dissipation monitoring (QCM-D). Carbon NY 165:317–327

    Article  CAS  Google Scholar 

  53. Zhang H, Zhu Z, Wang Y, Fei Z, Cao J (2018) Changing the activities and structures of bovine serum albumin bound to graphene oxide. Appl Surf Sci 427:1019–1029

    Google Scholar 

  54. Jachimska B, Tokarczyk K, Łapczyńska M, Puciul-Malinowska A, Zapotoczny S (2016) Structure of bovine serum albumin adsorbed on silica investigated by quartz crystal microbalance. Colloids Surf A Physicochem Eng Asp 489:163–172

    Article  CAS  Google Scholar 

  55. Phan HTM, Bartelt-Hunt S, Rodenhausen KB, Schubert M, Bartz JC (2015) Investigation of bovine serum albumin (BSA) attachment onto self-assembled monolayers (SAMs) using combinatorial quartz crystal microbalance with dissipation (QCM-D) and spectroscopic ellipsometry (SE). PLoS ONE 10:e0141282

    Article  Google Scholar 

  56. Kubiak-Ossowska K, Tokarczyk K, Jachimska B, Mulheran PA (2017) Bovine serum albumin adsorption at a silica surface explored by simulation and experiment. J Phys Chem B 121:3975–3986

    Article  CAS  Google Scholar 

  57. Bhowal AC, Talukdar H, Kundu S (2019) Preparation, characterization and electrical behaviors of PEDOT: PSS-Au/Ag nanocomposite thin films: an ecofriendly approach. Polym Bull 76(10):5233–5251

    Article  CAS  Google Scholar 

  58. Yu T, Breslin CB (2019) Two-dimensional titanium carbide MXenes and their emerging applications as electrochemical sensors. J Electrochem Soc 167:37514

    Article  Google Scholar 

  59. Come J, Naguib M, Rozier P, Barsoum MW, Gogotsi Y, Taberna P-L, Morcrette M, Simon P (2012) A non-aqueous asymmetric cell with a Ti2C-based two-dimensional negative electrode. J Electrochem Soc 159:A1368

    Article  CAS  Google Scholar 

  60. Echols IJ, An H, Zhao X, Prehn EM, Tan Z, Radovic M, Green MJ, Lutkenhaus JL (2020) pH-Response of polycation/Ti3C2Tx MXene layer-by-layer assemblies for use as resistive sensors. Mol Syst Des Eng 5:366–375

    Article  CAS  Google Scholar 

  61. Wang S, Liu Y, Lü Q-F, Zhuang H (2020) Facile preparation of biosurfactant-functionalized Ti2CTX MXene nanosheets with an enhanced adsorption performance for Pb (II) ions. J Mol Liq 297:111810

    Article  CAS  Google Scholar 

  62. Han C-G, Qian X, Li Q, Deng B, Zhu Y, Han Z, Zhang W, Wang W, Feng S-P, Chen G (2020) Giant thermopower of ionic gelatin near room temperature. Science 368:1091–1098

    Article  CAS  Google Scholar 

  63. Kumaravel A, Chandrasekaran M (2015) Electrochemical determination of chlorpyrifos on a nano-TiO2/cellulose acetate composite modified glassy carbon electrode. J Agric Food Chem 63:6150–6156

    Article  CAS  Google Scholar 

  64. Gund GS, Park JH, Harpalsinh R, Kota M, Shin JH, Kim T-I, Gogotsi Y, Park HS (2019) MXene/polymer hybrid materials for flexible AC-filtering electrochemical capacitors. Joule 3:164–176

    Article  CAS  Google Scholar 

  65. Chen X, Zhao Y, Li L, Wang Y, Wang J, Xiong J, Yu J (2021) MXene/polymer nanocomposites: preparation, properties, and applications. Polym Rev 61(1):80–115

    Article  CAS  Google Scholar 

  66. Aakyiir M, Oh JA, Araby S, Zheng Q, Naeem M, Ma J, Mai YW (2021) Combining hydrophilic MXene nanosheets and hydrophobic carbon nanotubes for mechanically resilient and electrically conductive elastomer nanocomposites. Comp Sci Technol 214:108997

    Article  CAS  Google Scholar 

  67. Andrianova MS, Gubanova OV, Komarova NV, Kuznetsov EV, Kuznetsov AE (2016) Development of a biosensor based on phosphotriesterase and n-channel ISFET for detection of pesticides. Electroanalysis 28(6):1311–1321

    Article  CAS  Google Scholar 

  68. El-Shahawi MS, Kamal MM (1998) Determination of the pesticide Chlorpyrifos by cathodic adsorptive stripping voltammetry, Fresenius. J Anal Chem 362:344–347

    CAS  Google Scholar 

  69. Al-Meqbali ASR, El-Shahawi MS, Kamal MM (1998) Differential pulse polarographic analysis of chlorpyrifos insecticide. Electroanal Int J Devoted Fundam Pract Asp Electroanal 10:784–786

    CAS  Google Scholar 

  70. Pelit FO, Ertaş H, Ertaş FN (2011) Development of an adsorptive catalytic stripping voltammetric method for the determination of an endocrine disruptor pesticide chlorpyrifos and its application to the wine samples. J Appl Electrochem 41:1279

    Article  CAS  Google Scholar 

  71. Dahiya V, Chaubey B, Dhaharwal AK, Pal S (2017) Solvent-dependent binding interactions of the organophosphate pesticide, chlorpyrifos (CPF), and its metabolite, 3, 5, 6-trichloro-2-pyridinol (TCPy), with Bovine Serum Albumin (BSA): A comparative fluorescence quenching analysis. Pestic Biochem Physiol 139:92–100

    Article  CAS  Google Scholar 

  72. Zhou G, Wang D-W, Yin L-C, Li N, Li F, Cheng H-M (2012) Oxygen bridges between NiO nanosheets and graphene for improvement of lithium storage. ACS Nano 6:3214–3223

    Article  CAS  Google Scholar 

  73. Ouyang J, Xu Q, Chu C-W, Yang Y, Li G, Shinar J (2004) On the mechanism of conductivity enhancement in poly (3, 4-ethylenedioxythiophene): poly (styrene sulfonate) film through solvent treatment. Polymer (Guildf) 45:8443–8450

    Article  CAS  Google Scholar 

  74. Kim H, Alshareef HN (2019) MXetronics: MXene-Enabled Electronic and Photonic Devices. ACS Mater Lett 2:55–70

    Article  Google Scholar 

  75. Zhang J, Zhou P, Liu J, Yu J (2014) New understanding of the difference of photocatalytic activity among anatase, rutile and brookite TiO2. Phys Chem Chem Phys 16:20382–20386

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by UTHM-UTM CRG grant K035 and Collaborative Research in Engineering, Science and Technology (CREST), R&D Grant No. A154 & P28C1-17, and Postgraduate Research Grant No GPPS-H002. This project is also funded by Ministry of Education (Malaysia) under Fundamental Research Grant Scheme (FRGS), with a reference number of FRGS/1/2018/STG05/UTHM/02/3 or FRGS Vot No. K106. The authors also acknowledge the support from Faezahana Mohkter and Ahmad Nasrul Mohamed for their technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. M. I. Megat Hasnan or N. Nayan.

Ethics declarations

Conflict of interest

The authors declare that there is no known conflict of interest regarding this work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hasnan, M.M.I.M., Lim, G.P., Nayan, N. et al. The investigation of chlorpyrifos (Cpy) detection of PEDOT:PSS-MXene(Ti2CTX)-BSA-GO composite using P-ISFET reduction method. Polym. Bull. 80, 1243–1264 (2023). https://doi.org/10.1007/s00289-022-04105-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-022-04105-5

Keywords

Navigation