Skip to main content
Log in

Synthesis and characterization of nanoparticles based on chitosan-biopolymers systems as nanocarrier agents for curcumin: study on pharmaceutical and environmental applications

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

In the present study, a combination of nanosized chitosan with different biodegradable and natural polymers, including Pectin (PEC), β-cyclodextrin (β-CD), sodium alginate (ALG), and polyvinyl alcohol (PVA) by using ionic gelation technique in the presence of Sodium tripolyphosphate (TPP) as a crosslinker, was synthesized and considered a nanocarrier agent for curcumin. Analytical techniques such as UV–Vis Spectrophotometry, Fourier transform infrared spectroscopy (FT-IR), Field emission Scanning Electron Microscopy (FE-SEM), Polydispersity indexes (PDI), and zeta potential have been employed to characterize the nanocarriers. In addition to the morphological and physicochemical properties of the drug delivery systems obtained, the in vitro curcumin stability and loading capacity performance were investigated. FTIR results indicated the interaction between chitosan and sodium tripolyphosphate (TPP) and other biopolymers to form the nanocarriers and also confirmed the successful curcumin loaded on the nanocarriers with the curcumin loading efficiency on all nanocarriers in the range of 58.00–60.40%. Further, the antioxidant activity of nanocarriers was examined by DPPH assay. Antioxidant activity of curcumin before and after encapsulation on the nanocarriers indicated that the encapsulation process had no disadvantageous effect on its antioxidant activity. The formed nanocarriers were exploited as biosorbents for chromium (VI) removal from an aqueous solution. The effects of pH, contact time, and initial chromium (VI) concentration were studied to optimize the conditions for maximum Cr(VI) adsorption. The Cur/Cs-ALG nanocarrier showed a suitable removal efficiency of 83% for Cr(VI) at pH 3. According to the Langmuir isotherm model, the maximum adsorption capacity of the nanocarriers for removing Cr(VI) was in the range of 217–400 mg g−1. The findings obtained from this research indicate that nanocarriers can act as excellent natural antioxidants, so these nano-complexes are appropriate not only for drug delivery systems but also for removing toxic metal ions. Therefore, we successfully encapsulated curcumin as a protective antioxidant by using nanoparticles as drug delivery carriers to remove chromium ions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Abd El-Ghany WA, Shaalan M, Salem HM (2021) Nanoparticles applications in poultry production: an updated review. Worlds Poult Sci J. https://doi.org/10.1080/00439339.2021.1960235

    Article  Google Scholar 

  2. Ghorbani M, Seyedin O, Aghamohammadhassan M (2020) Adsorptive removal of lead (II) ion from water and wastewater media using carbon-based nanomaterials as unique sorbents: A review. J Environ Manage 254:109814. https://doi.org/10.1016/j.jenvman.2019.109814

    Article  CAS  Google Scholar 

  3. Alsaba MT, Al Dushaishi MF, Abbas AK (2020) A comprehensive review of nanoparticles applications in the oil and gas industry. J Petrol Explor Prod Technol 10:1389–1399. https://doi.org/10.1007/s13202-019-00825-z

    Article  CAS  Google Scholar 

  4. Rahayu I, Darmawan W, Zaini LH, Prihatini E (2020) Characteristics of fast-growing wood impregnated with nanoparticles. J Forestry Res 31:677–685. https://doi.org/10.1007/s11676-019-00902-3

    Article  CAS  Google Scholar 

  5. Yadav A, Lomash V, Samim M, Flora SJ (2012) Curcumin encapsulated in chitosan nanoparticles: a novel strategy for the treatment of arsenic toxicity. Chem Biol Interact 199:49–61. https://doi.org/10.1016/j.cbi.2012.05.011

    Article  CAS  Google Scholar 

  6. Vishwakarma A, Sriram P, Preetha S, Tirumurugaan K, Nagarajan K, Pandian K (2019) Synthesis and characterization of Chitosan/TPP encapsulated curcumin nanoparticles and its antibacterial efficacy against colon bacteria. IJCS 7:602–606

    CAS  Google Scholar 

  7. Duan J, Zhang Y, Han S, Chen Y, Li B, Liao M, Chen W, Deng X, Zhao J, Huang B (2010) Synthesis and in vitro/in vivo anti-cancer evaluation of curcumin-loaded chitosan/poly (butyl cyanoacrylate) nanoparticles. Int J Pharm 400:211–220. https://doi.org/10.1016/j.ijpharm.2010.08.033

    Article  CAS  Google Scholar 

  8. Mohanraj V, Chen Y (2006) Nanoparticles-a review. Trop J Pharm Res 5:561–573. https://doi.org/10.4314/tjpr.v5i1.14634

    Article  Google Scholar 

  9. Tyagi V, Kaushik S, Tyagi S, Akiyama T (2011) Development of phase change materials based microencapsulated technology for buildings: a review. Renew Sustain Energy Rev 15:1373–1391. https://doi.org/10.1016/j.rser.2010.10.006

    Article  CAS  Google Scholar 

  10. Soppimath KS, Aminabhavi TM, Kulkarni AR, Rudzinski WE (2001) Biodegradable polymeric nanoparticles as drug delivery devices. J Control Release 70:1–20. https://doi.org/10.1016/S0168-3659(00)00339-4

    Article  CAS  Google Scholar 

  11. Sarcan ET, Silindir-Gunay M, Ozer AY (2018) Theranostic polymeric nanoparticles for NIR imaging and photodynamic therapy. Int J Pharm 551:329–338. https://doi.org/10.1016/j.ijpharm.2018.09.019

    Article  CAS  Google Scholar 

  12. González-Reza RM, Zambrano-Zaragoza ML, Hernández-Sánchez H (2019) Polymeric Nanoparticles in Foods. Springer, Plant Nanobionics, pp 217–233

    Google Scholar 

  13. Gan Z, Huang C, Shen Y, Zhou Q, Han D, Ma J, Liu S, Zhang Y (2020) Preparation of carbon nitride nanoparticles by nanoprecipitation method with high yield and enhanced photocatalytic activity. Chin Chem Lett 31:513–516. https://doi.org/10.1016/j.cclet.2019.04.065

    Article  CAS  Google Scholar 

  14. Li J, Shin GH, Lee IW, Chen X, Park HJ (2016) Soluble starch formulated nanocomposite increases water solubility and stability of curcumin. Food Hydrocolloids 56:41–49. https://doi.org/10.1016/j.foodhyd.2015.11.024

    Article  CAS  Google Scholar 

  15. Liu Y, Liu D, Zhu L, Gan Q, Le X (2015) Temperature-dependent structure stability and in vitro release of chitosan-coated curcumin liposome. Food Res Int 74:97–105. https://doi.org/10.1016/j.foodres.2015.04.024

    Article  CAS  Google Scholar 

  16. Dey S, Sreenivasan K (2014) Conjugation of curcumin onto alginate enhances aqueous solubility and stability of curcumin. Carbohyd Polym 99:499–507. https://doi.org/10.1016/j.carbpol.2013.08.067

    Article  CAS  Google Scholar 

  17. Chen F-P, Li B-S, Tang C-H (2015) Nanocomplexation between curcumin and soy protein isolate: Influence on curcumin stability/bioaccessibility and in vitro protein digestibility. J Agric Food Chem 63:3559–3569. https://doi.org/10.1021/acs.jafc.5b00448

    Article  CAS  Google Scholar 

  18. Silva-Buzanello, R.A.d., M.F.d. Souza, D.A.d. Oliveira, E. Bona, F.V. Leimann, L. Cardozo Filho, P.H.H.d. Araújo, S.R.S. Ferreira, O.H. Gonçalves, (2016) Preparation of curcumin-loaded nanoparticles and determination of the antioxidant potential of curcumin after encapsulation. Polímeros 26:207–214

    Article  Google Scholar 

  19. Basniwal RK, Khosla R, Jain N (2014) Improving the anticancer activity of curcumin using nanocurcumin dispersion in water. Nutr Cancer 66:1015–1022. https://doi.org/10.1080/01635581.2014.936948

    Article  CAS  Google Scholar 

  20. da Silva-Buzanello RA, Ferro AC, Bona E, Cardozo-Filho L, de Araújo PHH, Leimann FV, Gonçalves OH (2015) Validation of an Ultraviolet–visible (UV–Vis) technique for the quantitative determination of curcumin in poly (l-lactic acid) nanoparticles. Food Chem 172:99–104. https://doi.org/10.1016/j.foodchem.2014.09.016

    Article  CAS  Google Scholar 

  21. Park JH, Lee BM, Kim HS (2021) Potential protective roles of curcumin against cadmium-induced toxicity and oxidative stress. J Toxicol Environ Health, Part B 24:95–118

    Article  CAS  Google Scholar 

  22. Gupta N, Verma K, Nalla S, Kulshreshtha A, Lall R, Prasad S (2020) Free radicals as a double-edged sword: The cancer preventive and therapeutic roles of curcumin. Molecules 25:5390

    Article  CAS  Google Scholar 

  23. Moradi G, Zinadini S, Rajabi L, Derakhshan AA (2020) Removal of heavy metal ions using a new high performance nanofiltration membrane modified with curcumin boehmite nanoparticles. Chem Eng J 390:124546

    Article  CAS  Google Scholar 

  24. Naushad M, Ahamad T, AlOthman ZA, Ala’a H (2019) Green and eco-friendly nanocomposite for the removal of toxic Hg (II) metal ion from aqueous environment: adsorption kinetics & isotherm modelling. J Mol Liq 279:1–8

    Article  CAS  Google Scholar 

  25. Boruah B, Saikia PM, Dutta RK (2012) Binding and stabilization of curcumin by mixed chitosan–surfactant systems: A spectroscopic study. J Photochem Photobiol, A 245:18–27. https://doi.org/10.1016/j.jphotochem.2012.07.004

    Article  CAS  Google Scholar 

  26. Shafabakhsh R, Yousefi B, Asemi Z, Nikfar B, Mansournia MA, Hallajzadeh J (2020) Chitosan: A compound for drug delivery system in gastric cancer-a review. Carbohy Polym 242:116403

    Article  CAS  Google Scholar 

  27. Zhang Y, Zhao M, Cheng Q, Wang C, Li H, Han X, Fan Z, Su G, Pan D, Li Z (2021) Research progress of adsorption and removal of heavy metals by chitosan and its derivatives: A review. Chemosphere 279:130927

    Article  CAS  Google Scholar 

  28. Jawad AH, Abdulhameed AS, Abd Malek NN, Z.A. ALOthman, (2020) Statistical optimization and modeling for color removal and COD reduction of reactive blue 19 dye by mesoporous chitosan-epichlorohydrin/kaolin clay composite. Int J Biol Macromol 164:4218–4230

    Article  CAS  Google Scholar 

  29. Jawad AH, Mubarak NSA, Abdulhameed AS (2020) Hybrid crosslinked chitosan-epichlorohydrin/TiO 2 nanocomposite for reactive red 120 dye adsorption: kinetic, isotherm, thermodynamic, and mechanism study. J Polym Environ 28:624–637

    Article  CAS  Google Scholar 

  30. Abd Malek NN, Jawad AH, Abdulhameed AS, Ismail K, Hameed B (2020) New magnetic Schiff’s base-chitosan-glyoxal/fly ash/Fe3O4 biocomposite for the removal of anionic azo dye: An optimized process. Int J Biol Macromol 146:530–539

    Article  CAS  Google Scholar 

  31. Reghioua A, Barkat D, Jawad AH, Abdulhameed AS, Khan MR (2021) Synthesis of Schiff’s base magnetic crosslinked chitosan-glyoxal/ZnO/Fe3O4 nanoparticles for enhanced adsorption of organic dye: Modeling and mechanism study. Sustain Chem Pharmacy 20:100379

    Article  CAS  Google Scholar 

  32. Jawad, A.H., A.S. Abdulhameed, S. Surip, S. Sabar (2020) Adsorptive performance of carbon modified chitosan biopolymer for cationic dye removal: kinetic, isotherm, thermodynamic, and mechanism study. International Journal of Environmental Analytical Chemistry: 1–15.

  33. Ghorbani M, Mohammadi P, Keshavarzi M, Saghi MH, Mohammadi M, Shams A, Aghamohammadhasan M (2021) Simultaneous determination of organophosphorus pesticides residues in vegetable, fruit juice, and milk samples with magnetic dispersive micro solid-phase extraction and chromatographic method; recruitment of simplex lattice mixture design for optimization of novel sorbent composites. Anal Chim Acta 1178:338802. https://doi.org/10.1016/j.aca.2021.338802

    Article  CAS  Google Scholar 

  34. Pavesi T, Moreira JC (2020) Mechanisms and individuality in chromium toxicity in humans. J Appl Toxicol 40:1183–1197

    Article  CAS  Google Scholar 

  35. Sharma N, Sodhi KK, Kumar M, Singh DK (2021) Heavy metal pollution: Insights into chromium eco-toxicity and recent advancement in its remediation. Environ Nanotechnol Monitoring Manag 15:100388

    Article  CAS  Google Scholar 

  36. DesMarias TL, Costa M (2019) Mechanisms of chromium-induced toxicity. Current opinion in toxicology 14:1–7

    Article  Google Scholar 

  37. Langård, S. (2019) The carcinogenicity of chromium compounds in man and animals, Chromium: metabolism and toxicity, Chapman and Hall/CRC, pp. 13–30.

  38. Ghorbani M, Ariavand S, Aghamohammadhasan M, Seyedin O (2021) Synthesis and optimization of a green and efficient sorbent for removal of three heavy metal ions from wastewater samples: kinetic, thermodynamic, and isotherm studies. J Iran Chem Soc 18:1947–1963. https://doi.org/10.1007/s13738-021-02161-8

    Article  CAS  Google Scholar 

  39. Ghorbani M, Shams A, Seyedin O, Afshar Lahoori N (2017) Magnetic ethylene diamine-functionalized graphene oxide as novel sorbent for removal of lead and cadmium ions from wastewater samples. Environ Sci Pollut Res 25:5655–5667. https://doi.org/10.1007/s11356-017-0929-7

    Article  CAS  Google Scholar 

  40. Jawad AH, Abdulhameed AS, Bahrudin NN, Hum NNMF, Surip S, Syed-Hassan SSA, Yousif E, Sabar S (2021) Microporous activated carbon developed from KOH activated biomass waste: surface mechanistic study of methylene blue dye adsorption. Water Sci Technol 84:1858–1872

    Article  CAS  Google Scholar 

  41. Jawad AH, Abdulhameed AS, Hanafiah M, Z.A. ALOthman, M.R. Khan, S. Surip, (2021) Numerical desirability function for adsorption of methylene blue dye by sulfonated pomegranate peel biochar: Modeling, kinetic, isotherm, thermodynamic, and mechanism study. Korean J Chem Eng 38:1499–1509

    Article  CAS  Google Scholar 

  42. Jawad, A.H., A.S. Abdulhameed, E. Kashi, Z.M. Yaseen, Z.A. ALOthman, M.R. Khan (2021) Cross-linked chitosan-glyoxal/kaolin clay composite: Parametric optimization for color removal and COD reduction of remazol brilliant blue R dye. Journal of Polymers and the Environment: 1–15.

  43. Jawad AH, Abdulhameed AS, Wilson LD, Hanafiah M, Nawawi W, Z.A. ALOthman, M.R. Khan, (2021) Fabrication of Schiff’s Base Chitosan-Glutaraldehyde/Activated Charcoal Composite for Cationic Dye Removal: Optimization Using Response Surface Methodology. J Polym Environ 29:2855–2868

    Article  CAS  Google Scholar 

  44. Hosseini SF, Zandi M, Rezaei M, Farahmandghavi F (2013) Two-step method for encapsulation of oregano essential oil in chitosan nanoparticles: preparation, characterization and in vitro release study. Carbohyd Polym 95:50–56. https://doi.org/10.1016/j.carbpol.2013.02.031

    Article  CAS  Google Scholar 

  45. Anirudhan TS, Divya PL, Nima J (2016) Synthesis and characterization of novel drug delivery system using modified chitosan based hydrogel grafted with cyclodextrin. Chem Eng J 284:1259–1269

    Article  CAS  Google Scholar 

  46. Bartakova M, Dvorackova E, Chromcova L, Hrdlicka P (2020) Simple phenols in tropical woods determined by UHPLC-PDA and their antioxidant capacities: an experimental design for Randall extraction using environmentally friendly solvents. J Forestry Res 31:819–826

    Article  CAS  Google Scholar 

  47. Maithilikarpagaselvi N, Sridhar MG, Sripradha R (2020) Evaluation of free radical scavenging activities and phytochemical screening of Curcuma longa extracts. J Young Pharm 12:113

    Article  CAS  Google Scholar 

  48. Mishra SK, Ferreira J, Kannan S (2015) Mechanically stable antimicrobial chitosan–PVA–silver nanocomposite coatings deposited on titanium implants. Carbohyd Polym 121:37–48

    Article  CAS  Google Scholar 

  49. Ma W, Tobin J (2004) Determination and modelling of effects of pH on peat biosorption of chromium, copper and cadmium. Biochem Eng J 18:33–40

    Article  CAS  Google Scholar 

  50. Vakili M, Deng S, Li T, Wang W, Wang W, Yu G (2018) Novel crosslinked chitosan for enhanced adsorption of hexavalent chromium in acidic solution. Chem Eng J 347:782–790

    Article  CAS  Google Scholar 

  51. Li Q-H, Dong M, Li R, Cui Y-Q, Xie G-X, Wang X-X, Long Y-Z (2021) Enhancement of Cr (VI) removal efficiency via adsorption/photocatalysis synergy using electrospun chitosan/g-C3N4/TiO2 nanofibers. Carbohy Polym 253:117200

    Article  CAS  Google Scholar 

  52. Upadhyay U, Sreedhar I, Singh SA, Patel CM, Anitha K (2021) Recent advances in heavy metal removal by chitosan based adsorbents. Carbohy Polym 251:117000

    Article  CAS  Google Scholar 

  53. Gordi Z, Ghorbani M, Ahmadian Khakhiyani M (2020) Adsorptive removal of enrofloxacin with magnetic functionalized graphene oxide@ Metal-organic frameworks employing D-optimal mixture design. Water Environ Res 92:1935–1947. https://doi.org/10.1002/wer.1346

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahboubeh Masrournia.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 146 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rezagholizade-shirvan, A., Masrournia, M., Fathi Najafi, M. et al. Synthesis and characterization of nanoparticles based on chitosan-biopolymers systems as nanocarrier agents for curcumin: study on pharmaceutical and environmental applications. Polym. Bull. 80, 1495–1517 (2023). https://doi.org/10.1007/s00289-022-04095-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-022-04095-4

Keywords

Navigation